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General introdu
tion
1Stroke strikes all over the world. �As if the integrity of my mind/body 
onne
-tion had somehow be
ome 
ompromised�, a

ording to dr. Bolte Taylor (2009)who des
ribes her own stroke as a �step by step deterioration of the intri
ate neu-rologi
al 
ir
uitry�. Although ea
h stroke is unique (see Box 1.1), the 
ommonpart is a 
ompromised oxygen supply to 
ertain brain regions resulting in 
ell deathand loss of fun
tion.As ea
h brain region is responsible for a spe
i�
 fun
tion, the e�e
ts of a strokeare highly dependent on the lo
ation and size of the region in whi
h the strokeo

urred. In the �rst period after her stroke, dr. Taylor 
ould not understandlanguage, read, write, walk or talk. Impairments 
aused by stroke in
lude 
ompro-mised 
ontralateral motor 
ontrol, mus
le weakness, spasti
ity, memory de�
its,loss of sensation, visual impairments and 
ompromised bladder and bowel 
ontrol(Roth and Harvey 2002). In addition to these physi
al impairments, a stroke 
analso in�uen
e psy
hologi
al fun
tions and 
an lead to depression, fear and anxiety.Box 1.1: StrokeStrokes are either is
hemi
 (about80% of all strokes) or hemorrhagi
(�gure 1.1). An is
hemi
 stroke is
hara
terized by obstru
ted 
erebralblood �ow. Either by thrombosis, em-bolism or la
unes (Roth and Harvey2002).

Figure 1.1: S
hemati
 representation ofis
hemi
 (left) and hemorrhagi
 (right)strokes.

(Almost) complete recovery

Minor impairments

Moderate to severe impairments

Severe impairments

requiring nursing home 

Death

Figure 1.2: Prognosis after strokeaHemorrhagi
 strokes are 
aused byrupture of a blood vessel (Donnanet al. 2008) either inside the brain(intra
erebral hemorrhage) or in thespa
e around the brain (Subara
hnoidhemorrhage). Only 10% of the strokevi
tims will fully re
over, others eitherdie shortly after stroke or have to 
opewith minor to severe impairments, see�gure 1.2.adata obtained from http://www.uhnj.org/stroke/stats.htm, De
ember 2013 3



Chapter 1
1 1.1 In�uen
e of stroke on daily lifeWorldwide, every three se
onds a new stroke survivor (and his/her family) has to
ope with some of the fun
tional impairments des
ribed above. Imagine not beingable to 
ommuni
ate or express your feelings, 
annot remember things from yourlife before the stroke or be
ome dependent on others for daily movement tasks.A

ording to ES Lawren
e et al. (2001), 77.4% of a
ute stroke patients haveupper limb motor de�
its and 72.4% have lower limb motor de�
its. Compromisedhuman motor 
ontrol (Box 1.2) will lead to various limitations during a
tivities ofdaily living, like eating, drinking and personal hygiene, and diminish the patient'sindependen
y.In a healthy situation, we are not 
ons
iously involved in moving our limbs orin opening and 
losing our hands. Un
ons
iously we predi
t the weight of a 
up of
o�ee and pi
k it up to bring it to our mouth to drink. That is, if you like 
o�eeof 
ourse, otherwise you would probably think twi
e. Many stroke patients haveto work very hard to move their arm 
ontralateral to the brain lesion in a desiredway. Over time this may improve due to the 
ompensatory strategies (Roby-Bramiet al. 2003) or plasti
ity of the brain, i.e. the brain's ability to rearrange and letother regions take over fun
tions from lost and a�e
ted regions (Johansson 2000;Nudo et al. 2001; Barsi et al. 2008).Box 1.2: Corti
al motor 
ontrolVoluntary movements are initiated toa
hieve a desired goal. The brainintegrates sensory information fromthe body and it's environment todrive the appropriate mus
les to a
-
omplish a 
ertain task. During thetask, sensory signals from mus
les andskin are fed ba
k to the brain andused to 
ontrol the movement (Kan-del et al. 2000). Mus
le a
tivationis driven from the primary motor 
or-tex (M1). M1 is 
lassi
ally dividedin subse
tions responsible for distin
tbody parts (Nudo et al. 2001) 
om-monly referred to as the homun
ulus(�little man�) as shown in �gure 1.3.Corti
al drive from M1 is proje
ted tothe alpha motor neuron in the spinal
ord through the 
orti
ospinal tra
t.

The 
orti
ospinal tra
t 
rosses to theopposite side of the spinal 
ord: rightsided movements are 
ontrolled by theleft hemisphere and vi
e versa. Thenerve endings of the alpha motor neu-ron in the spinal 
ord innervate themus
les to generate the desired move-ment (Kandel et al. 2000).
M1Figure 1.3: Anatomi
al divisions of the pri-mary motor 
ortex (Redrawn based on Pen-�eld and Rasmussen 1950)4
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11.2 Motor (re)learningPeople learn their whole life. The basis of learning is the formation of new neuralpathways and modi�
ation of existing pathways. After stroke, patients have to(partially) relearn motor 
ontrol. Motor learning is des
ribed by Bastian (2008) asthe �formation of a new motor pattern that o

urs via long-term pra
ti
e (i.e. days,weeks, years).� A 
on
ept 
losely related to motor learning is motor adaptation,whi
h des
ribes the modi�
ation of a movement due to per
eived errors. Forinstan
e, adaptation to be able to use a 
omputer-mouse set to a di�erent speedas one is used to. This adaptation pro
ess 
an turn into a �learned� 
alibrationfor the new environment. In rehabilitation, patients who 
an only move slowly orina

urate �do not need to learn the movement from s
rat
h but do need substantialre
alibration for their altered neural 
ontrol� (Bastian 2008).Integration of sensory information is an important fa
tor for (re)learning. Inmonkey experiments, in whi
h the primary sensory hand area was ablated, monkeyswere able to perform previously learned movements, but were not able to learn newmovements (Krakauer 2006). For generalization of tasks learned by training totasks in daily life, repetitive training of the same movement seems insu�
ient.When patients are asked to pi
k up a glass at variable positions, they will probablylearn the movement of rea
hing for a glass in a spe
i�
 pla
e to a lesser extent,but they might be better in generalizing the task to real life and also retention ofthe learned movement is expe
ted to be higher in the variable setting (Krakauer2006).1.3 Therapy after strokeSome spontaneous re
overy 
an o

ur after stroke (Nudo 2006). To further redu
eimpairment and enhan
e fun
tional independen
e of stroke survivors, additionaltherapy is 
ommonly provided. Stroke therapy either exploits brain plasti
ity torelearn movement by extensive training or fo
uses on strategies to 
ompensate forlost fun
tions. Applied training paradigms in
lude arm ability training, 
onstraint-indu
ed movement therapy, bilateral arm training, fun
tional ele
tri
al stimulation(box 1.3), intera
tive robot therapy and virtual reality based therapy (Krakauer2006; Timmermans et al. 2009). These therapies should fo
us on task-orientedtraining (skill learning) to obtain better generalization from rehabilitation settingto daily life a
tivities (Timmermans et al. 2009).1.4 Fun
tional ele
tri
al stimulationThe prin
iples of fun
tional ele
tri
al stimulation (FES) are explained in box 1.3.FES is su

essfully applied as a prostheti
 system to repla
e lost fun
tions, mainlyafter spinal 
ord injury (She�er and Chae 2007; Snoek et al. 2000). FES 
analso be used as therapeuti
 system to improve motor fun
tion after stroke. FEStraining 
an in
rease mus
le strength and thereby redu
e weakness due to non-use(Powell et al. 1999; Rosewilliam et al. 2012) and 
an redu
e pain and 
ontra
tions5
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1 (Malhotra et al. 2012). In a systemati
 review of randomized 
lini
al trials, deKroon et al. (2002) identi�ed positive training e�e
ts of FES training on motor
ontrol. Barsi et al. (2008) showed in
reased 
orti
al ex
itability after post strokeFES training, whi
h indi
ates regeneration of neural pathways.1.5 Rehabilitation roboti
sRobots are inexhaustive and therefore an ideal partner for intensive repetitive fun
-tional training after stroke. The past de
ades, several roboti
 systems for arm andhand therapy have been designed. MIT-manus (Hogan et al. 1992), Hapti
Master(Van der Linde et al. 2002), CADEN-7 (Perry et al. 2007), ARMin (Nef et al.2007), Freebal (Stienen et al. 2009b) and Dampa
e (Stienen et al. 2009a) are ex-Box 1.3: Fun
tional Ele
tri
al StimulationFun
tional ele
tri
al stimulation(FES) evokes neural a
tivity in motornerve �bers. Generated a
tion poten-tials will lead to 
ontra
tion of themus
le, see �gure 1.4. An importantdi�eren
e 
ompared to normal neurala
tivity is the reversed re
ruitmentorder. With FES the thi
kest motornerve �bers are a
tivated �rst, as op-posed to physiologi
al a
tivation inwhi
h the smallest-diameter nervesare a
tivated �rst (She�er and Chae2007), leading to more 
oarse move-ment and earlier fatigue. In addi-tion, to obtain smooth 
ontra
tionswith FES, motor units are a
tivatedsyn
hronously with relatively high fre-quen
y, also leading to relatively earlymus
le fatigue.Three types of ele
trodes 
an be usedto transfer the generated stimulus tothe nerve: 1) implanted, 2) per
uta-neous or 3) surfa
e ele
trodes. Im-planted ele
trodes have the bene�t ofproperly 
u�ng the ele
trode aroundthe nerve leading to very sele
tive a
-tivation. However, this highly inva-

sive solution is mainly suitable for per-manent FES appli
ations. Surfa
eele
trodes are pla
ed further fromthe target nerve and dedi
ated ele
-trode pla
ement is required for sele
-tive mus
le a
tivation. However, 
ur-rent spreads out in the tissue under-neath the ele
trodes and a
tivation ofmultiple nerves 
annot always be pre-vented. Nevertheless, due to its non-invasiveness, surfa
e ele
trodes are
ommonly used in rehabilitation pra
-ti
e, espe
ially in training therapy (deKroon et al. 2002).
Figure 1.4: S
hemati
 overview of mus
lea
tivation with surfa
e FES (1) or invasivealternatives: nerve 
u� (2), intraspinal (3)or intra
orti
al (4) stimulation (Stein andMushahwar 2005)6
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1amples of either roboti
 exoskeletons or end-point manipulators for arm training.Also some systems for hand training have been developed (Worsnopp et al. 2007;Lamber
y et al. 2007; Dovat et al. 2008).Two re
ent reviews evaluated the e�e
ts of roboti
 stroke therapy (Prange etal. 2006; Krebs et al. 2008). They both 
on
lude that roboti
 therapy 
an improvemotor 
ontrol of the hemipareti
 upper limb. Roboti
 aided therapy gives similarresults as 
onventional therapy (Kwakkel et al. 2008) and roboti
 manipulatorsfa
ilitate more intensive training and obje
tive measurements (Lum et al. 2002),without the need of a therapist being 
ontinuously present. Thus multiple pa-tients 
ould train simultaneously under supervision of a single therapist or patientsmight even use roboti
s without supervision at home for intensive training with thetherapist only monitoring progress regularly.1.6 The MIAS-ATD proje
t: a hybrid approa
hRoboti
s is ideal for intensive and repetitive training. However, from a me
hani
alpoint of view, properly a
tuating the hand and �ngers with a roboti
 devi
e withoutinterfering movements is relatively 
omplex. Fun
tional ele
tri
al stimulation hasbeen su

essfully used for a
tuation of hand and �ngers and might therefore be anex
ellent extension for a roboti
 arm support system. A hybrid system will allowfor assistan
e of fun
tional task-oriented movements, fo
using on skill-learningand therefore has potential as a rehabilitation devi
e, aiming at generalization toa
tivities of daily life.The ATD (A
tive Therapeuti
 Devi
e) bran
h of the MIAS (Medi
al Innova-tions for an Aging So
iety) proje
t fo
uses on the development of a hybrid re-habilitation system. The proje
t is a 
onsortium of Dem
on, ti
 Medizinte
hnik,Use-Lab, Roessingh Resear
h & Development (RRD) and the University of Twente(UT) funded by Interreg IV-A, part of the European regional development fund.Within the 
onsortium requirements and possibilities for a hybrid rehabilitationsystem were analyzed. Prototype roboti
s were built by Dem
on and prototypestimulator equipment was provided by ti
 Medizinte
hnik. The prototypes wereevaluated by Use-Lab, RRD and UT.1.7 Resear
h questionsThe main goal of this thesis is to develop and evaluate 
ontrol algorithms for ahybrid rehabilitation system 
ombining FES and roboti
s. The thesis will provideanswers to the following questions that arise for proper 
ontrol of a hybrid rehabil-itation system.� Whi
h mus
les involved in grasp and release are available to target withsurfa
e FES? And to what extent 
an these mus
les be sele
tively a
tivatedwith FES?� What is the relation between stimulation input and for
e output of individual7
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1 mus
les? How 
an this relation be modeled and used to 
ontrol the redundantmus
ular system with FES?� Can the developed prototype FES system a
tivate hand mus
les properly forfun
tional grasp and release?� Is the developed prototype roboti
 manipulator suitable for assistan
e offun
tional rea
h movements?� Is the hybrid rehabilitation system 
ombining roboti
s for rea
h and FES forgrasp and release e�e
tive for passive movement support?1.8 Thesis outlineIn this thesis several experimental studies are des
ribed to answer the questionsabove and evaluate the prototype hybrid system. By the use of an automatedsystem for stroke rehabilitation, whi
h is also appli
able in the patient's home,therapy 
an be intensi�ed. Ideally, an automated system should only support whenne
essary, thereby maximizing patient e�ort (Wolbre
ht et al. 2008). However,in this thesis the te
hni
al feasibility and performan
e is evaluated and thereforethe subje
ts were asked to relax in the des
ribed experiments (i.e. no voluntarymovement). A passive subje
t will be the most demanding situation for the systemand is therefore used as evaluation setting.In Chapter 2 the possibilities for sele
tive a
tivation of individual �ngers byfun
tional ele
tri
al stimulation are explored. The main question to be answeredis whether it is possible to �nd spe
i�
 lo
ations for sele
tive �nger movements indi�erent healthy subje
ts.Chapter 3 uses sele
tive a
tivation of three thumb mus
les to 
ontrol the for
esgenerated by the thumb in the plane perpendi
ular to the thumb. A model for therelation between the stimulation parameters and the evoked for
es is developedand evaluated in both healthy subje
ts and stroke subje
ts. Subsequently, theindividual mus
le models are used to 
ontrol the thumb for
e towards target for
eve
tors by sharing the load among the individual mus
les.A shift towards position 
ontrol is made in Chapter 4, where the relationbetween mus
le stimulation and �nger movement is modeled and subsequentlyused in a model predi
tive 
ontroller. This 
ontroller uses the estimated model andpredi
ts the ne
essary stimulation parameters based on desired �nger joint angles.To estimate the performan
e of this 
ontrol approa
h, real obje
ts are grasped andreleased in healthy subje
ts and stroke subje
ts.In Chapter 5, the design and te
hni
al evaluation of a new a
tive therapeuti
devi
e is presented. This roboti
 end point manipulator is 
apable of providingguidan
e for
es and 
ountera
ting the weight of the arm to make arm movementseasier.Chapter 6 
ombines the systems presented in 
hapter 4 and 
hapter 5. The
ombination of roboti
 supported rea
h movement and support of grasp and release8
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1by fun
tional ele
tri
al stimulation is evaluated during passive rea
h, grasp andrelease tasks in healthy subje
ts and stroke subje
ts.Finally, in Chapter 7 the results of this thesis are summarized and dis
ussed.The dis
ussion fo
uses on 
lini
al impli
ations of the knowledge 
urrently obtainedand the required future steps to translate this knowledge to 
lini
al appli
ations.

9
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Abstra
tEle
tri
al stimulation of arm and hand mus
les 
an be a fun
tional tool for patients withmotor dysfun
tion. Su�
ient stimulation of �nger and thumb mus
ulature 
an supportnatural grasping fun
tion. Yet it remains un
lear how di�erent grasping movements 
anbe sele
tively supported by ele
tri
al stimulation. The goal of this study is to determine towhat extent a
tivation of individual �ngers is possible with surfa
e ele
tri
al stimulation forthe purpose of rehabilitation following stroke.The extensor digitorum 
ommunis (EDC) mus
le, �exor polli
is longus (FPL) mus
le andthe thenar mus
le group, all involved in grasp and release, were sele
ted for stimulation.The evoked for
es in individual �ngers were measured. Stimulation thresholds and sele
tiveranges were determined for ea
h subje
t. Ele
trode lo
ations where the highest sele
tiverange o

urred were 
ompared between subje
ts and in�uen
es of di�erent isometri
 wristpositions were assessed.In all subje
ts sele
tive stimulation of middle �nger extension and thumb �exion was pos-sible. In addition, sele
tive stimulation of index and ring �nger extension was possible inmost 
ases. In 9 out of the 10 EDC subje
ts we were able to stimulate 3 or all 4 �ngerssele
tively. However, large variability in ele
trode lo
ations for high sele
tivity was observedbetween the subje
ts.Within the designs of grasping prostheses and grasping rehabilitation devi
es, the variabilityof ele
trode lo
ations should be taken into a

ount. The results of our study fa
ilitatethe optimization of su
h designs and favor a design whi
h allows individualized stimulationlo
ations.12



Sele
tivity and resolution of surfa
e FES for grasp and release
2

2.1 Introdu
tionGrasp and release of obje
ts is an important fun
tion in daily life. Both graspingand releasing be
omes di�
ult or even impossible for large numbers of patientsfrom several pathologies. Su�
ient ele
tri
al stimulation (ES) of �nger �exor andextensor mus
les, together with the thumb mus
ulature, 
an help these patientsto be
ome more fun
tionally independent (e.g. Shimada et al. 2003) and regainmanual dexterity.Besides dire
tly produ
ing fun
tional hand movement, ES is used to train fun
-tional movements in stroke patients (e.g. Barsi et al. 2008). For therapeuti
 ESsurfa
e stimulation is preferred above per
utaneous stimulation, be
ause of thenon-invasive 
hara
ter. During therapeuti
 training sessions, ES 
an assist fun
-tional movements, leading to motor re-learning of these movements (Krakauer2006). Espe
ially ES in 
ombination with voluntary e�ort enhan
es motor re-learning (DB Popovi¢ et al. 2009).Redu
ed mus
le sele
tivity, after stroke for example, leads to impaired �nemotor skills (Lang and S
hieber 2004). If ES 
an be used to sele
tively a
tivatemus
les, it 
ould be used to train �ne motor 
ontrol. Small ele
trodes are able tomore pre
isely target mus
les or mus
le parts for sele
tive a
tivation than are largerele
trodes. This pre
ise targeting, however, is in
reasingly vulnerable to deviationsin ele
trode lo
ation. Therefore, ele
trodes should be positioned pre
isely, whi
hwill be more time-
onsuming 
ompared to larger ele
trodes.The mus
le motor point positions relative to the skin are known to vary amongdi�erent subje
ts (Nathan 1979; Nathan 1990) and might 
hange during move-ments of the mus
le itself or during the movement of nearby mus
les (Cameronet al. 1999). If the inter-subje
t variation and the variation due to movement bothare small, a general lo
ation may be determined, leading to near-optimal stimu-lation for most patients. However, if the inter-subje
t variation is substantial orstimulation lo
ations vary largely during movement, a sear
h pro
edure for theindividualized lo
ation will be ne
essary. Array ele
trodes, 
overing the variations(Popovi¢-Bijeli¢ et al. 2005; M Lawren
e et al. 2008; DB Popovi¢ and MB Popovi¢2009) together with an online self-learning algorithm for ele
trode sele
tion 
ouldbe a solution in that 
ase.Numerous obje
ts manipulated during daily life (e.g. 
o�ee 
ups, bottles,spoons or pen
ils), require su

essful movement of the thumb to form a fun
tionalgrip. In addition, some patients su�er from involuntarily enlarged �exor a
tivity,whi
h hampers extension of individual �ngers (e.g. Lang et al. 2009) and thereforethe release of obje
ts. Also, 
ontrolled 
losing of the hand by sele
tive �exion ofthe �ngers be
omes more di�
ult. In the pin
h grip for instan
e it is importantthat the other �ngers do not interfere with the a
tive �ngers performing the grip.For rehabilitation, where assistan
e should be applied only when needed, sele
tive�nger extension (to 
ountera
t enlarged �exor a
tivity) and thumb opposition arethe fo
us when developing e�e
tive tools for relearning grasp and release fun
tions.Anatomi
ally, the extensor digitorum 
ommunis (EDC) mus
le 
onsists of sev-eral parts a
tuating the di�erent �ngers. These parts are innervated by di�erent13
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nerve bran
hes. Thus, theoreti
ally it should be possible to sele
tively stimulateextension of individual �ngers (Leijnse et al. 2008). However, when voluntary ex-tending a single �nger, some movement of other �ngers 
an be observed (vanDuinen et al. 2009). This results from both biome
hani
al 
oupling and 
ombinedneuromus
ular 
ontrol (Lang and S
hieber 2004). When ES is applied to indu
emovement these 
ouplings 
an also be expe
ted.In the past, several neuroprostheti
 ES devi
es have been developed (Mi
eraet al. 2010), in
luding the Bioness H200 (formerly Ness Handmaster) (Hara 2008),Bioni
 Glove (Pro
hazka et al. 1997) and Me
Fes (Thorsen et al. 1999). All ofthese devi
es su

essfully use surfa
e ES to train or aid a
tivities of daily life. Inthe Bioness H200, ele
trodes are �xed to the orthosis at appropriate positions.On
e these positions are determined, donning and do�ng be
omes quite easy.Problems with all of these devi
es in
lude: somewhat limited mus
le sele
tivityand 
omplexity in appli
ation due to problems with ele
trode positioning (Mi
eraet al. 2010).Keller et al. (2006), assessed sele
tivity of ES applied to the �nger �exors. Theyobserved 
ouplings between the di�erent �ngers in all subje
ts. They were able tosele
tively a
tivate the middle and ring �ngers in all subje
ts, although this wasnot expressed quantitatively. Nathan (1990) assessed threshold 
urrent levels forboth targeted and over�ow mus
les in bipolar ES. Over�ow to other mus
les wasobserved during stimulation of several arm mus
les. Di�erent parts of the EDCmus
le - for sele
tive �nger extension - were not 
onsidered.The goal of the 
urrent study is to determine the sele
tivity and inter-subje
tvariability of ES applied to three mus
les involved in grasping and releasing ob-je
ts: extensor digitorum 
ommunis (EDC), �exor polli
is longus (FPL) and thethenar mus
le group. The main fun
tions of these mus
les are extension of the�ngers, �exion of the thumb and abdu
tion/opposition of the thumb, respe
tively.Knowledge of the sele
tivity and the variability will give insight in the a

ura
yneeded for ele
trode pla
ement, whi
h forms important input to the developmentof new therapeuti
 tools using ES. The more sele
tive a mus
le 
an be a
tivated,the more possibilities for �ne motor 
ontrol will be
ome available.
2.2 Methods2.2.1 Subje
tsIn total 19 healthy subje
ts parti
ipated in this study, divided over two subgroups.Group 1 (N=10; age range 23-27 yr; 5 male) parti
ipated in the extensor digitorum
ommunis part of the study and the group 2 (N=9; age range 23-30 yr; 6 male)parti
ipated in the thumb mus
ulature part of the study. All measurements wereperformed on the left hand. Subje
ts gave informed 
onsent and the experimentswere 
ondu
ted in a

ordan
e with the De
laration of Helsinki.14
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Figure 2.1: S
hemati
 overview of 
ustom-made setup for measurement of �nger for
es. Thesubje
t's �ve �ngers were strapped in pre-loaded wires. Small load-
ells measured wire tensionand as su
h �nger for
e.2.2.2 Experimental setupA 
ustom-made setup was used, 
onsisting of an ele
tri
al stimulator and a setupfor measurement of �nger for
es.Ele
tri
al stimulationA battery-powered and 
urrent-
ontrolled monophasi
 ele
tri
al stimulator witha peak amplitude of 13.5 mA was used. A 
ustom-built Matlab/Simulink (TheMathworks in
., Nati
k, USA) interfa
e 
ontrolled the stimulator wirelessly througha BlueTooth 
onne
tion. An oval-shaped ele
trode of 6x4 
m was used as the anodeand a round ele
trode, 1.5 
m in diameter, was used as the 
athode. Ele
trodeswith similar size showed good results on both sele
tivity and 
omfort in a simulationstudy by Kuhn et al. (2010).For
e measurementTo measure �nger for
e, a 
ustom-made setup was built, see �gure 2.1. This setup
onsisted of an aluminum frame in whi
h the lower left arm of the subje
t wasstrapped just proximal to the elbow and wrist joints. The setup allowed severalisometri
 positions. The �ngers were 
onstrained by pre-loaded wires. The tensionin the wires was measured by LSB200 load 
ells (Futek, Irvine, USA), with amaximum for
e 
apa
ity of 45.3 N. 15
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Figure 2.2: To determine the position of the EDC and FPL grid points, small round labels werepla
ed relative to bony landmarks. Equidistant points for ele
trode pla
ement were drawn betweenthese labels. For the thenar mus
ulature a 3×3 grid of 1 
m spa
ed was drawn on the thenar,relative to the meta
arpal bone of the thumb.2.2.3 Experimental proto
olEle
trode pla
ementThe anode was pla
ed on the posterior side of the lower arm, just proximal to theulnar styloid pro
ess. To position the 
athode at the Flexor Polli
is Longus (FPL)mus
le and the Extensor Digitorum Communis (EDC) mus
le, a web 
am (Philips,Eindhoven, The Netherlands) was added to the setup for virtual proje
tion of gridpoints. In addition, the web
am was used to take pi
tures of the ele
trode lo
ation,see �gure 2.2. For ea
h subje
t, the grid points were s
aled a

ording to the sizeof the subje
t's arm, as the points were de�ned relative to bony landmarks. For
athode pla
ement on the thenar mus
les, a 3×3 grid of 1 
m spa
ed points wasdrawn on the thenar.Stimulation proto
olThe mus
les were ele
tri
ally stimulated with single pulses of 350 µs width. Everyse
ond a stimulus was applied. For fun
tional movement pulse trains with a fre-quen
y of 12-50 Hz are often used instead of single pulses. We 
hose to use singlepulses to be able to dire
tly 
onne
t the measured for
e response to the appliedstimulation pulse, without the need of taking the pulse history into a

ount.The stimulus amplitude started at 2 mA and was in
reased by 0.5 mA at twose
ond intervals, until the subje
t reported unbearable dis
omfort or the maximumamplitude of 13.5 mA was rea
hed. For most subje
ts, 13.5 mA was still bearable,but they reported that the intensity was on the edge of painful stimulation.16
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2.2.4 Re
ordingsSensor data was ampli�ed by SG-3016 Isolated Strain Gauge Input Modules (ICP-DAS, Taipei, Taiwan) and a
quired by a USB-6259 data a
quisition module (Na-tional instruments, Austin, USA) together with a p
 running a 
ustom-built Mat-lab/Simulink (The Mathworks in
., Nati
k, USA) interfa
e. For
e responses weremeasured at 1.6 kHz.2.2.5 Data analysisFor
e data from ea
h sensor was pre-pro
essed in two steps: 1) a �rst order But-terworth high pass �lter with a 
ut-o� frequen
y of 1 Hz was applied to removedrift and 2) a 50 ms window moving average �lter was applied to redu
e noise.Sele
tion of response thresholds and sele
tive rangesFor ea
h individual �nger, the ele
trode lo
ation with the lowest response thresholdwas determined. A threshold of 0.025 N was used to dis
riminate between sensornoise and an a
tual for
e response. The sele
tive range was determined as the rangebetween the response threshold of the spe
i�
 �nger and the response thresholdof any other �nger. The size of the sele
tive range gives information about howsele
tively a single �nger 
an be stimulated. See �gure 2.3 for an example ofdetermination of response thresholds and sele
tive ranges.Variation between subje
tsFor ea
h subje
t the ele
trode lo
ation(s) with the lowest response thresholds fora spe
i�
 �nger was determined. This 
an be multiple grid points when multiplepoints have the same response threshold. For ea
h subje
t i, a matrix Gi with thesame size as the ele
trode grid is determined. Gi is one at the lowest thresholdlo
ation(s) and zero otherwise. Finally, the normalized relative o

urren
e G wasdetermined for all subje
ts together by summing all Gi's and division by the numberof subje
ts, N, as des
ribed in equation 2.1.
G =

∑Gi

N
(2.1)2.2.6 In�uen
e of altered isometri
 positionFive di�erent isometri
 positions were tested, see table 2.1. Threshold and sele
tiverange were determined for the index �nger (EDC stimulation) and the thumb (FPLstimulation). Threshold levels and size of sele
tive ranges of the di�erent isometri
positions were 
ompared to the neutral position using paired t-tests with Bonferroni
orre
tion for multiple 
omparisons. 17
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Figure 2.3: Determination of response thresholds and sele
tive range after EDC stimulation for a single grid lo
ation. Response threshold was determinedfor ea
h �nger (indi
ated by the labeled arrows) as the stimulation amplitude where the resulting for
e ex
eeded a threshold of 0.025 N. The sele
tiverange for a single grid-point was de�ned as the amplitude range where only one �nger responded to the stimulation. In this spe
i�
 example, the resultingsele
tive range is 3-6 mA. 18
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Table 2.1: Tested isometri
 wrist positionsPosition Flexion/extension Pro/supination1 neutral neutral2 45o extension neutral3 45o �exion neutral4 neutral 90o pronation5 neutral 90o supination2.3 Results2.3.1 Sele
tiveness of stimulationFigures 2.4 and 2.5 show plots of the sele
tive ranges for the di�erent �ngers ofthe di�erent subje
ts. For all subje
ts, it is possible to sele
tively stimulate middle�nger extension (�gure 2.4). In addition, for most subje
ts, sele
tive stimulationis possible for the index and ring �ngers. Sele
tive stimulation of the little �nger isa
hieved in only 4 of 10 subje
ts. For the stimulation of thumb movement (�gure2.5), all subje
ts show the possibility for sele
tive stimulation. Sele
tive rangesvary with the ele
trode lo
ations.In �gure 2.6, box plots of the sele
tive range sizes are shown for the four �ngersand the thumb (both FPL and thenar stimulation). For ea
h subje
t the largestsele
tive range for a spe
i�
 �nger is sele
ted (highest grey bar in ea
h plot of�gure 2.4 and 2.5). The sele
tive ranges for index and middle �ngers are similar.A de
rease in sele
tive range is observed for the ring and little �ngers. Sele
tiveranges for the thumb are 
omparable to those of index and middle �ngers.2.3.2 Variation of response thresholds with respe
t to grid pointsIn �gure 2.7 the normalized distribution of lowest-threshold grid-points a
ross sub-je
ts (see Eq. 2.1) is shown for the EDC mus
le (A-D), the FPL mus
le (E) and thethenar mus
les (F). For the di�erent �ngers, 
lustering of grid-points 
an be ob-served. Thus the lowest-threshold points for the di�erent �ngers lie 
lose togetherfor the di�erent subje
ts. However, there was a large overlap between the di�erent�ngers. In the thumb mus
les, the points with the lowest threshold were morespread over the grid. Thus the ele
trode lo
ation where the stimulation thresholdwas lowest varied greatly between di�erent subje
ts.2.3.3 In�uen
e of altered isometri
 positionFigure 2.8 shows respon
es of threshold amplitude and sele
tive range to alteredisometri
 positions for the Index �nger and the thumb. Distributions over thesubje
ts 
ompared to the neutral position are shown.There was a large variation in the responses for the di�erent subje
ts. For bothEDC stimulation and FPL stimulation, no signi�
ant systemati
 
hange in eitherthreshold amplitude or sele
tive range due to the altered isometri
 positions wasobserved. 19
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Figure 2.4: Thresholds and sele
tive ranges for the subje
ts (rows) of group 1 (N=10). The
olumns present responses of ea
h �nger to stimulation of the extensor digitorum 
ommunismus
le at sele
ted ele
trode positions (squares). Data represented as explained in �gure 2.3.
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2.4 Dis
ussionAll subje
ts showed the possibility to sele
tively stimulate individual �nger exten-sion and thumb �exion. We were able to sele
tively stimulate the thumb in all 9subje
ts. In all subje
ts of the EDC group, we were able to sele
tively stimulateat least 2 �ngers. In 9 out of the 10 EDC subje
ts we were able to stimulate3 or all 4 �ngers sele
tively. However sele
tive extension of the little �nger wasnot a
hieved in 6 of 10 subje
ts. These results indi
ate that some �ne 
ontrol ofthe �ngers might be possible with the use of ES. The ele
trode positions leadingto either the lowest threshold amplitude or the largest sele
tive range varied sub-stantially between subje
ts. Thus, although it is possible to sele
tively stimulatedi�erent �ngers, the appli
ation of this sele
tive stimulation requires knowledge ofthe individual properties of the subje
t. In addition, pla
ement of the stimulationele
trode at the lo
ation with the lowest response threshold does not ne
essarilyyield the largest sele
tive range. Therefore, the 
hoi
e of ele
trode lo
ation shoulddepend on the required sele
tivity of the task. Assisting 
ylindri
al grasp/releasefor instan
e will require less sele
tiveness than assisting the pin
h grip or othermore 
omplex manual tasks.2.4.1 Physiologi
al aspe
tsThe fa
t that sele
tive stimulation is a
hieved, is likely the result of stimulationof individual mus
le parts through individual nerve bran
hes. Leijnse et al. (2008)observed arrangements of di�erent EDC mus
le bellies 
ommon to di�erent spe
-imens. They observed the mus
le part of the little �nger was not 
onsistentlyseparable from the ring �nger part. In addition, the tendon of this mus
le partinserts into both ring and little �ngers. This 
ould explain the fa
t that we wereunable to sele
tively stimulate the little �nger in 6 of 10 subje
ts in the 
urrentstudy.The relatively small sele
tive ranges of the EDC mus
le observed in our exper-iments might be 
aused by me
hani
al 
oupling of the tendons, by the so 
alledjun
turae tendinum, whi
h 
onne
ts the tendons of the di�erent �ngers on theba
k of the hand (Lang and S
hieber 2004). In addition, 
ouplings in a
tive neu-romus
ular 
ontrol might in�uen
e the ability to sele
tively a
tivate a single digitnegatively. Lang and S
hieber (2004) observed this neuromus
ular 
oupling to belargest in the 
ontrol of ring and little �ngers, whi
h also might have 
ontributedto the fa
t that we were unable to sele
tively stimulate the little �nger in our study.Mus
le positions relative to the skin 
hange during wrist movement and onewould expe
t that ele
tri
al stimulation parameters vary with this position 
hange.However, under altered isometri
 positions we did not observe systemati
 
hanges ineither threshold level or sele
tive range. Our observations do indi
ate that there isa large variability between the subje
ts regarding the in�uen
e of altered isometri
positions. Therefore, an individual approa
h for identifying in�uen
e of alteredwrist position and 
ompensation for the possibly altered response is desirable.24
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2.4.2 Related workThe 
urrent study showed similar results to the study of Keller et al. (2006). How-ever they looked at the sele
tivity of �nger �exor mus
les, they also su

eeded insele
tive stimulation of most of the �ngers, but were unable to sele
tively stimu-late the little �nger. Nathan (1990) did not look into the stimulation of individual�ngers, but was able to sele
tively stimulate the thumb by the FPL mus
le andthe thenar mus
ulature. For the FPL the sele
tive ranges were quite similar. Forthe thenar mus
ulature he observed mu
h larger ranges. This might be 
ausedby the usage of bipolar ele
trodes instead of monopolar in our 
ase. In bipolarstimulation, the 
urrent 
an be targeted more pre
ise. This is likely to have moree�e
t in smaller mus
les, like the thenar mus
ulature.Re
ently, Kuhn et al. (2009) showed that by the use of a proper 
ombination ofgel layer resistivity and distan
e between the ele
trodes, multiple ele
trodes in thearray 
an be used to produ
e a larger virtual ele
trode, with similar properties ofa physi
ally larger ele
trode. They state that the distan
e between the ele
trodesshould stay below 3 mm to keep losses small. The larger this size, the larger thegel layer resistivity needs to be. In another study, Kuhn et al. (2010) 
omparedstimulation 
omfort and stimulation sele
tivity. The results showed that the most
omfortable ele
trode size depends on the thi
kness of the fat layer and the depthof the nerve to be stimulated. In thin fat layers and for stimulation of super�
ialnerves, smaller ele
trodes were more 
omfortable. Subje
ts 
an tolerate higher
urrent densities on smaller ele
trodes.2.4.3 LimitationsFor daily life appli
ations, higher frequen
y stimulation would be more useful in-stead of single pulse stimulation, be
ause higher for
es 
an be evoked. The goal ofthe 
urrent study was to assess the extent to whi
h individual �ngers 
an be a
ti-vated using ele
tri
al stimulation. This spatial sele
tivity depends on the geometryof the underlying tissues. The geometry might 
hange due to movement of the wristor due to 
ontra
tion of the mus
le itself. We did not �nd any systemati
 e�e
tsof di�erent wrist positions. In higher frequen
y stimulation the 
ontra
tion of themus
le will be larger 
ompared to single pulse stimulation. Therefore, the geome-try might 
hange more. However, as our results indi
ate di�erent wrist positionsnot having a systemati
 e�e
t on the sele
tivity, we do not expe
t mu
h e�e
tof higher frequen
y stimulation on the mus
le sele
tivity. Enoka and Fuglevand(2001) 
ompared twit
h and tetanus data of mus
les that 
ontrol the digits of thehand. Their 
omparison also indi
ated that for these mus
les the twit
h-tetanusratio does not 
hange systemati
ally with in
reasing for
e.We did not spe
i�
ally target the EDC mus
le, but rather targeted the dorsalskin of the proximal forearm under whi
h the EDC is lo
ated. As a result othernearby mus
les, like Extensor Carpi Ulnaris (ECU) and EDM, might also be stim-ulated by the pulses. Sin
e the wrist was �xed in the setup, a
tivation of the ECU(a wrist mus
le) should not in�uen
e our results. As we were unable to target the25



Chapter 2
2

little �nger sele
tively in most 
ases, it is unlikely that spe
i�
 a
tivation of theEDM mus
le has o

urred instead of the EDC mus
le.Here healthy subje
ts were measured. In the future, this 
an be extended tosubje
ts from di�erent pathologies mentioned before. Note that mus
ular proper-ties and (lo
al) innervation of the arm mus
les are not a�e
ted as a dire
t resultof the mentioned pathologies. At a later stage, due to altered use or even non-use,these properties will 
hange of 
ourse. But even after se
ondary 
ompli
ationsgeometry of the skin and its underlying mus
les will not 
hange mu
h. It is thisgeometry whi
h is an important fa
tor for spatial sele
tivity of surfa
e stimulation.The observed inter-subje
t variability in both ele
trode position for sele
tivestimulation and in�uen
es of altered isometri
 positions in a healthy subje
t pop-ulation already demand for an individualized approa
h for ea
h subje
t. Althoughthe response of the plegi
 limbs of patients with neurologi
al damage is di�
ultto predi
t, it is unlikely that variability will de
rease. Thus, designs of futuregrasp-and-release rehabilitation devi
es should in
lude the possibility to positionthe stimulation ele
trodes a

ording to the needs of the individual patient.In the 
urrent study, we did not take skin thi
kness or thi
kness of the sub-
utaneous fat layers of the individual subje
ts into a

ount. This variation in fatlayer thi
kness might explain the variability in stimulation levels and sele
tivenesspartially, but it is expe
ted that the fat layers of our subje
ts had a mu
h smallervariability than the variability of the stimulation responses.Subje
t 
omfort was not expli
itly measured in our study. Stimulation wasstopped if subje
ts reported unbearable dis
omfort. In most 
ases subje
ts wereable to withstand a stimulation intensity of 13.5 mA, whi
h was the limit of ourstimulator hardware. In theory, stimulation hardware with a broader stimulationrange, might have led to di�erent results, i.e. larger stimulation ranges. However,in most 
ases multiple �ngers responded at a stimulation intensity of 13.5 mA,thus stimulation was not sele
tive anymore. In addition, most subje
ts reportedthe stimulation intensity of 13.5 mA on the edge of painful stimulation. Therefore,we do not think the somewhat small range of the stimulation hardware has limitedour results.2.4.4 Impli
ations for rehabilitationWe measured isometri
 for
es resulting from single pulse stimulation to determinesele
tivity of surfa
e ele
tri
al stimulation. As su
h we 
annot exa
tly determinewhether the sele
tive stimulation is appli
able in a rehabilitation setting or in dailylife. However, we 
an relate measured for
es to the thumb for
e needed in liftinga glass �lled with water (≈0.25 kg) and �nger for
es needed to over
ome enlargeda
tivity of �exor mus
les.Lifting a 0.25 kg obje
t, assuming a 
oe�
ient of fri
tion of 0.5, requires a for
eof 5 N exerted by all �ngers together. Kamikawa and Maeno (2008) estimatedfor
e distribution ratios a
ross the �ngers and their phalanges: a required for
eof 5 N leads to a desired for
e of approximately 0.55 N to be exerted by theproximal phalanx of the thumb. Enoka and Fuglevand (2001) estimated a twit
h-26
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tetanus ratio of 1:3 for the mus
les 
ontrolling the digits. Applying this ratio tothe maximum sele
tive for
es 
urrently measured, leads to exerted for
es of 0.6 Nat the proximal thumb phalanx due to tetani
 stimulation, whi
h is enough to lifta 0.25 kg obje
t.At the medial phalanges of the �ngers we measured extension for
es around0.1 N. A

ording to Monster and H Chan (1977), the relaxed EDC mus
le has atwit
h-tetanus ratio of about 1:5. This ratio leads to an estimated tetani
 for
e of0.5 N at ea
h of the medial �nger phalanges. To the best of our knowledge, thereexists no literature on �exion for
es of individual �ngers due to enlarged a
tivity.We believe an estimated tetani
 for
es of 0.5 N 
an be used for (at least assistan
eof) extension of an individual �nger su�ering from enlarged �exor a
tivity.Based on these numbers, it is likely that the sele
tive stimulation we observedin our measurements 
an be useful for appli
ation in rehabilitation and daily life.However, dire
t measurements would give a more 
lear view on this aspe
t.2.5 Con
lusionThe goal of the 
urrent study was to determine the sele
tivity and inter-subje
tvariability of ES applied to mus
les involved in grasp and release. The results ofthis study show that it is possible to sele
tively stimulate a single �nger in mostsubje
ts. However, the extent of this sele
tive stimulation is highly variable be-tween di�erent �ngers and between di�erent subje
ts. In addition, the possiblegrid points for this sele
tive stimulation di�er strongly between subje
ts. In ouropinion, array ele
trodes are very useful for future designs of grasping prosthesesand grasping rehabilitation devi
es. The use of array ele
trodes provides the pos-sibility of automati
 
ustomization. So ES, even for more sele
tive stimulationwith smaller ele
trodes, 
an be applied in a plug and play manner. Be
ause of thepossible 
hange of ele
trode lo
ations during movement and the time varian
e ofthe mus
ular system, an online self-learning algorithm whi
h 
ontinuously identi�esthe best ele
trode lo
ations for the given task under the 
hanging 
ir
umstan
es
an be used. A model whi
h maps ele
trode lo
ations to produ
ed �nger for
esunder di�erent angles and subje
t properties will be useful to predi
t out
omes.Su
h model 
an be used in a later stage to 
ontrol ES of grasp and release in ane�
ient manner. The results presented here, fa
ilitate the optimization of su
hte
hniques and the development of future ES devi
es in general.
27
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Chapter 3

3 Abstra
tStroke survivors often have di�
ulties in manipulating obje
ts with their a�e
ted hand.Thumb 
ontrol plays an important role in obje
t manipulation. Surfa
e fun
tional ele
tri
alstimulation (FES) 
an assist movement. We aim to 
ontrol the 2D thumb for
e by predi
tingthe sum of individual mus
le for
es, des
ribed by a sigmoidal mus
le re
ruitment 
urve anda single for
e dire
tion.Five able bodied subje
ts and �ve stroke subje
ts were strapped in a 
ustom built setup.The for
es perpendi
ular to the thumb in response to FES applied to three thumb mus
leswere measured. We evaluated the feasibility of using re
ruitment 
urve based for
e ve
tormaps in predi
ting output for
es. In addition, we developed a 
losed loop for
e 
ontroller.Load sharing between the three mus
les was used to solve the redundan
y problem havingthree a
tuators to 
ontrol for
es in two dimensions. The thumb for
e was 
ontrolled towardstarget for
es of 0.5 N and 1.0 N in multiple dire
tions within the individual's thumb workspa
e. Hereby, the possibilities to use these for
e ve
tor maps and the load sharing approa
hin feed forward and feedba
k for
e 
ontrol were explored.The for
e ve
tor predi
tion of the obtained model had small RMS errors with respe
t tothe a
tual measured for
e ve
tors (0.22± 0.17 N for the healthy subje
ts; 0.17± 0.13 Nfor the stroke subje
ts). The stroke subje
ts showed a limited work range due to limitedfor
e produ
tion of the individual mus
les. Performan
e of feed forward 
ontrol withoutfeedba
k, was better in healthy subje
ts than in stroke subje
ts. However, when feedba
k
ontrol was added performan
es were similar between the two groups. Feedba
k for
e
ontrol lead, espe
ially for the stroke subje
ts, to a redu
tion in stationary errors, whi
himproved performan
e.Thumb mus
le responses to FES 
an be des
ribed by a single for
e dire
tion and a sig-moidal re
ruitment 
urve. For
e in desired dire
tion 
an be generated through load sharingamong redundant mus
les. The for
e ve
tor maps are subje
t spe
i�
 and also suitable infeedforward and feedba
k 
ontrol taking the individual's available workspa
e into a

ount.With feedba
k, more a

urate 
ontrol of mus
le for
e 
an be a
hieved.30
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3.1 Introdu
tionStroke has be
ome a major 
ause of morbidity and mortality in the western world.In
iden
e of stroke also in
reases in less developed 
ountries as a result of 
hanginglife-styles (Ovbiagele and Nguyen-Huynh 2011). Greying of so
iety and improvedhealth-
are are likely to result in an in
rease of stroke survivors. Fun
tional in-dependen
e of stroke survivors is highly in�uen
ed by their ability to perform asu

essful grasp. In many a
tivities of daily living, like drinking or opening a door,grasp and release is an essential part of the required movement.Fun
tional ele
tri
al stimulation (FES) of hand mus
les 
an be helpful to traingrasp and release in stroke subje
ts (Crago et al. 1991; DB Popovi¢ and MBPopovi¢ 2009; Mi
era et al. 2010). Depending on the ability of the individualpatient, the assistan
e may be sele
tively (
hapter 2) in
reased or de
reased inorder to maximize the voluntary a
tivity whi
h is important in relearning movements(Wolbre
ht et al. 2008).Grasping 
omprises 
oordinated �nger and thumb motion and 
ontrolled for
eexertion on the obje
t to be held. As mus
les initiate human movement, a

urate
ontrol of mus
le for
e is a prerequisite for movement 
ontrol. For grasping tasksthe �ngers 
an be regarded as single degree of freedom (DoF) joints, sin
e move-ment of the individual phalanges is 
oupled be
ause of the under a
tuation of the�nger. Furthermore, rotation along the �exion-extension axis of the �nger is byfar the most important movement for grasping and releasing obje
ts. The thumb,however, requires a di�erent approa
h as it moves along multiple axes. Controllingfor
e and movement of the thumb will be most 
hallenging and may serve as amodel, whi
h may be generalized/redu
ed to the single DoF 
ase for the other�ngers.A healthy thumb is a
tuated in several dire
tions by nine mus
les in total(Kaufman et al. 1999; Pearlman et al. 2004). However, not all nine mus
les 
anbe targeted properly with surfa
e FES. Mainly, be
ause of overlying mus
les andnearby sensory nerves making stimulation un
omfortable. Therefore, only a smallsubset of thumb mus
les is available for FES with surfa
e ele
trodes. This limitsthe movements whi
h 
an be 
ontrolled with FES. However, thumb movementsrelevant for grasping (mainly opposition) are feasible with surfa
e ele
trodes.For
e distribution over multiple mus
les is 
ommonly applied in biome
hani
almodeling, solving a
tuator redundan
y problems for a given task (Happee 1994;Prilutsky and Zatsiorsky 2002). This load sharing approa
h might also be usefulfor a
tivating a redundant mus
uloskeletal system. In addition, by sharing the loadover all available mus
les we maximize the available range of for
e. However, toour knowledge, load sharing has not been applied to external a
tivation of mus
leswith surfa
e ele
tri
al stimulation. We will evaluate this possibility and expe
tthis approa
h to result in a

urate for
e 
ontrol with a for
e distribution over theindividual mus
les optimized by minimizing the sum of squared re
ruitment overall mus
les.Re
ently, Lujan and Crago (2009) measured thumb for
es evoked by threethumb mus
les in healthy subje
ts and one spinal 
ord injured patient. Using the31
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measured for
es they trained an arti�
ial neural network (ANN) for feed forwardfor
e 
ontrol. They showed good 
ontrol of the isometri
 thumb for
e in 2D. Withthe 
urrent study we aim at a more transparent approa
h: using linear 
ombina-tions of estimated mus
le for
e ve
tors instead of using a bla
k-box ANN. Thisapproa
h gives us the bene�t of learning more of the underlying physiologi
al sys-tem, by 
omparing 
ombined mus
le responses with individual mus
le responses.In addition, it might allow for a more generally appli
able approa
h, without theneed of training an ANN.The goal of the 
urrent study is twofold: 1) Is it possible to des
ribe thumbmus
le responses to FES by a sigmoidal mus
le re
ruitment 
urve and a singledire
tion of for
e? And if so, are these so 
alled mus
le for
e maps subje
t spe
i�
,suitable for stroke subje
ts and time-invariant? And 2) Are mus
le for
e mapssuitable for use in 2D thumb for
e 
ontrol with FES applying load sharing? Andif so, is feed forward 
ontrol only su�
ient and is the approa
h also suitable forstroke subje
ts?3.2 MethodsWe will introdu
e the proposed generalized mus
le for
e model for thumb for
e
ontrol and mus
le load sharing �rst. Thereafter we will des
ribe the experimentalevaluation of this model in both healthy subje
ts and stroke subje
ts.3.2.1 Generalized mus
le for
e modelWe aimed at predi
ting mus
le for
e resulting from FES by a relatively simplemodel. At a spe
i�
 thumb posture we assumed that the for
e dire
tion of ea
hmus
le, φi, is 
onstant and that a nonlinear sigmoidal relation exists between thestimulation amplitude and the generated mus
le for
e.
|~Fi(Ai)|=

p1i

1+ e
−(Ai−p2i)

p3i

−C, C =
p1i

1+ e
p2i
p3i

(3.1)In Eq. 3.1, |~Fi(Ai)| is the for
e magnitude of mus
le i at stimulus amplitude Ai;
pi1 is related to the for
e saturation level, i.e. the maximal output for
e of thatmus
le, pi2 is related to the in�e
tion point of the sigmoidal re
ruitment 
urve and
pi3 is related to the horizontal s
aling of the re
ruitment 
urve, i.e. the amplituderange. The latter term in Eq. 3.1 is an o�set term, ensuring zero for
e if theamplitude is zero. The mus
le for
e dire
tions, together with the maximal for
eamplitudes for ea
h mus
le represents the for
e ve
tor map for a system of multiplemus
les, see �gure 3.1 for an example.Feedforward thumb for
e modelWe assumed a linear ve
tor summation of the mus
le for
es a
ting around thesame joint.

~F =
n

∑
i=1

xi|~Fmax,i|

[

cos(φi)
sin(φi)

] (3.2)32
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In Eq. 3.2, the predi
ted thumb for
e ve
tor ~F , is the ve
tor sum of the individ-ual mus
le for
es (n = 3), modelled as a re
ruitment fra
tion, xi, of the maximalmus
le for
e magnitudes, |~Fmax,i|.The model of Eq. 3.2 was used to obtain the mus
le stimulation levels givena desired thumb for
e. This inverse problem is redundant: three mus
les 
an bestimulated to obtain a thumb for
e in two dire
tions. In our (real-time) 
ontrollerimplementation, we addressed this redundan
y problem by minimizing the squaredmus
le re
ruitment. Minimal summed for
e is a typi
al 
riterion also used inmus
uloskeletal modeling and load sharing studies (Happee 1994; Prilutsky andZatsiorsky 2002). The re
ruitment was modeled as a fra
tion of the maximalfor
e, thus we obtained a bounded problem whi
h 
an be formulated as minimizingthe ve
tor norm shown:
∣

∣

∣

∣

∣

∣
Fmax~x−~Fr

∣

∣

∣

∣

∣

∣

2

2
(3.3)In whi
h ~Fr is the [2x1℄ 
olumn ve
tor equal to the referen
e for
e and Fmax isthe [2x3℄ matrix 
ontaining the maximal x and y for
es of ea
h of the three mus
les.

~x is the [3x1℄ 
olumn ve
tor with individual mus
le re
ruitment fra
tions. To takethe bounds on x into a

ount we reformulated the ve
tor norm shown in 3.3 as theequation shown in Eq. 3.4.
argmin
x∈[0,1]

~xT FT
maxFmax~x−2~FT

r Fmax~x+~FT
r
~Fr (3.4)Sin
e the latter term is independent of x, the optimal re
ruitment, x, minimizingEq. 3.4 
an be written as a quadrati
 problem of the form as shown in Eq. 3.5,with Q = FT

maxFmax and ~c = FT
max

~Fr.
argmin
x∈[0,1]

1
2
~xT Q~x−~cT~x (3.5)Finally the 
al
ulated referen
e for
es for ea
h mus
le, xFmax, are 
onverted tostimulation amplitudes by using the inverse of the sigmoidal re
ruitment (Eq. 3.1)
urve shown in Eq. 3.6.

Ai =−p3i ln

(

p1i

|~Fi|+C
−1

)

+ p2i (3.6)The 
ombination of obtained stimulation amplitudes, Ai, is the 
ombinationwhi
h theoreti
ally would produ
e a for
e equal to the referen
e for
e, ~Fr, or at leastthe for
e whi
h is minimizing Eq. 3.3 when the system has rea
hed its boundariesof operation. The 
onstant C represents the o�set term as introdu
ed in Eq. 3.1.3.2.2 Model evaluationSubje
tsFive able bodied subje
ts (age 32 ± 13 years, 3 men) and �ve stroke subje
ts(age 55 ± 18, 4 men) were in
luded for this study. Table 3.1 summarizes the34
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Table 3.1: Stroke subje
ts' 
hara
teristi
sSubje
t Age Sex A�e
ted side Months post-stroke ARATS1 50 M L 44 52/57S2 61 M R 156 3/57S3 69 M L 45 24/57S4 68 M L 46 17/57S5 26 F L 58 2/57The maximal obtainable A
tion Resear
h Arm test (ARAT) s
ore is 57 points (normal movement).
hara
teristi
s for the individual stroke subje
ts. The study was in a

ordan
e withthe de
laration of Helsinki and was approved by the lo
al medi
al ethi
s 
ommittee.All subje
ts gave written informed 
onsent. During the experiments, the subje
tswere asked to relax their mus
les, in order to avoid voluntary mus
le a
tivation.Experimental setupEither the dominant arm (healthy subje
ts) or the a�e
ted arm (stroke subje
ts)was strapped in a 
ustom built devi
e. This setup was used to �xate the wrist andthe hand in neutral pronosupination, and to measure the isometri
 thumb for
e intwo dire
tions perpendi
ular to the axis of the thumb. For
es were measured bytwo 45.3 N load 
ells (Futek, Irvine) preloaded with springs. See �gure 3.1.A spe
ial built 3 
hannel asyn
hronous biphasi
 ele
tri
al stimulator (TIC Medi-zin, Dorsten, Germany) was used to apply the ele
tri
al stimulation pattern. Stim-ulation was applied at a 
onstant frequen
y (30 Hz) and pulse width (150 µs). Theamplitude 
ould be 
ontrolled via 
ustom built 
ontrollers within the stimulator'srange [0−30mA] in steps of 0.125mA. A single 50x50mm anode was used togetherwith 16x19mm 
athodes for ea
h 
hannel. Ele
trodes with similar size showed goodresults on both sele
tivity and 
omfort in a simulation study (Kuhn et al. 2010).An EtherCAT I/O system (Be
kho� Automation GmbH, Verl, Germany) usingMatlab/xPC (The Mathworks, Natti
k, USA) as EtherCAT master devi
e wasused to 
ontrol the stimulator parameters and to 
apture analog data from thefor
e sensors.Experimental proto
olPreparationThe Abdu
tor polli
is longus (AbPL), Opponens polli
is (OpP) and Flexor pol-li
is brevis (FPB) mus
les were sele
ted for stimulation. We expe
ted to movethe thumb su�
iently in dire
tions needed for grasp and release with these mus-
les. OpP opposes the thumb (pre-grasp), FPB moves the thumb inward (grasp)and AbPL moves the thumb up (release). Ele
tri
al stimulation was applied(30Hz;150µs) when ele
trodes were pla
ed initially. The amplitude was in
reasedto evaluate responses and subje
t 
omfort. Ele
trodes were lo
ated at the motorpoints based on exploration of the responses to ele
tri
al stimulation. See �gure 3.2for an example of ele
trode pla
ement. 35
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Figure 3.2: Ele
trode pla
ement. Example of pla
ement of ele
trode on (top) AbPL and pla
e-ment of anode at the dorsum of the wrist and (bottom) above FPB mus
le and OpP mus
le. TheAbPL ele
trodes was pla
ed just medial of the radial bone, approximately 5 
m proximal to thewrist joint, the OpP ele
trode was pla
ed laterally on the thenar, about 1/3 of the length of the�rst meta
arpal bone, measured from the proximal side. The FPB ele
trode was pla
ed at abouthalf the length of the �rst meta
arpal bone on the medial side of the thenar. Exa
t ele
trodelo
ations were determined experimentally based on observed responses and subje
t 
omfort.

36
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For
e ve
tor map determinationThe subje
t spe
i�
 for
e map (see �gure 3.1 for an example) was determined inthe isometri
 setup, with the thumb visually positioned at 30 degrees of abdu
tionand 30 degrees of extension. The threshold and maximal stimulation amplitudefor ea
h mus
le were determined �rst: we stimulated (30Hz;150µs) ea
h mus
leindividually for 1 se
ond, followed by 0.5 se
ond without stimulation. Every 1.5se
ond the amplitude was in
reased by 1mA. When either a saturation in thefor
e response was observed or the subje
t reported unpleasant dis
omfort, thestimulation was stopped.The range between the threshold minus 1mA and the maximal amplitude wasdivided in ten equidistant stimulation levels for ea
h mus
le. We applied these30 stimulations (10 amplitudes per mus
le) randomly and measured the exertedthumb for
es.From this initialization measurement, we determined the for
e dire
tion of ea
hindividual mus
le and the re
ruitment 
urve relating mus
le stimulation to exertedfor
e. The re
ruitment 
urves were des
ribed with a sigmoidal fun
tion having threeparameters, using Eq. 3.1. Parameter values were obtained with a least-squares �t,using the Levenberg-Marquardt algorithm (Seber and Wild 2003). See �gure 3.1for an example of mus
le re
ruitment 
urves and for
e dire
tions. This for
e ve
tormap indi
ates the ability to 
ontrol the thumb for
e in di�erent dire
tions for aspe
i�
 subje
t.Individual mus
le 
ontrollersAfter determination of the for
e ve
tor maps, the feedba
k 
ontroller gains weredetermined. Initial gains were obtained from an open loop step response pro
eduredeveloped by Ziegler and Ni
hols (1942). The step response referen
e pattern hadthe following sequen
e: [0.5 0.8 0.5 0.2 0.5]|Fmax|. The referen
e was held 
onstantfor three se
onds at ea
h spe
i�
 level. Thus, ex
luding the steps at begin and end,this resulted in four step responses in total (two positive and two negative stepsof step size 0.3|Fmax|). The signs of the negative step responses were inverted andthen the average of all four step responses was used to determine the open loopgain, Ko.
Ko =

X0

Mu

τ
τdead

(3.7)In Eq. 3.7 the open loop gain, Ko, is 
al
ulated from the normalized inputmagnitude, X0, the measured steady state output magnitude, Mu, the time untilthe output responds, τdead and the time between the �rst response and the outputrea
hing the steady state, τ. As suggested by Ziegler and Ni
hols (1942), theproportional gain, Kc, for ea
h mus
le was 
al
ulated as 90% of the open loop gainand the integration time for the PI-
ontroller, Ti, was set as 3.3 times τdead .For every mus
le and subje
t the inverse of the re
ruitment 
urve 
ompensatesthe non-linear and subje
t and mus
le spe
i�
 re
ruitment. In this way the non-linear elements and maximal for
e levels are 
ompensated within the 
ontrol loopleading to a linear feedba
k 
ontroller between observed for
e error and referen
efor
e. Furthermore it is expe
ted that range of 
ontrol gains between the di�erent37
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mus
les and di�erent subje
ts is relatively small, sin
e the mus
le and subje
tspe
i�
 re
ruitment 
urve transforms the outputs of the PI 
ontrollers (for
es) intothe required stimulation amplitudes.After determining the initial gains for ea
h mus
le, in total four single mus
letests were done for ea
h mus
le to be able to analyze performan
es of the individ-ual mus
le 
ontrollers: 1) step response referen
e pattern with feedba
k 
ontrol,2) 0.5 Hz sinusoidal referen
e pattern with feedba
k 
ontroller, 3) step responsereferen
e pattern with a 
ombination of feedforward and feedba
k 
ontrol, and 4)0.5 Hz sinusoidal referen
e pattern with a 
ombination of feedforward and feedba
k
ontrol.When os
illatory behavior was observed during the �rst test, the proportionalgain was lowered systemati
ally and the test was repeated until good tra
king of thereferen
e was observed without severe os
illations. In some 
ases the integrationtime Ti was in
reased slightly for further �ne tuning.3.2.3 2D thumb for
e targetsFor evaluation of the 2D 
ontrollers, 5 se
ond 
onstant referen
e for
e targets wereused. The targets were set at 0.5 N and 1.0 N in di�erent dire
tions within theworkspa
e of the subje
t. Initially, dire
tions were 
hosen at −90◦, −60◦, −30◦,
0◦, 30◦ and 60◦. Angles outside the theoreti
al workspa
e of the subje
t werenot measured. When less than four target dire
tions were theoreti
ally feasible,intermediate angles (15◦ step size) were also evaluated.Feedforward thumb for
e 
ontrolThe appli
ability of the thumb for
e model was evaluated �rst in an experimentbased on feed forward 
ontrol of the three mus
les. In this experiment 
ontrolwas based on the measured mus
le parameters and the thumb model des
ribed inEq. 3.2. Based on the previously determined for
e map, target angles greater thanthe angle of the long abdu
tor mus
le or smaller. The experiment was repeatedthree times to explore the reprodu
ibility of the methods. The target sequen
e wasthe same in ea
h repetition. The sharing of the load was 
al
ulated by implementingEq. 3.5 in a real-time quadrati
 programming (QP) problem solver using the onlinea
tive set strategy (Ferreau et al. 2008).Feedforward and Feedba
k thumb for
e 
ontrolControl performan
e might be improved by adding error feedba
k. This was evalu-ated in a se
ond set of 
ontrol trials in whi
h the feed forward 
ontrol was extendedwith feedba
k error 
ompensation. For
e targets were the same as in the feed for-ward 
ontrol experiments. The error ve
tor between the referen
e for
e ve
tor andthe a
tual for
e ve
tor was used as referen
e input for a se
ond QP optimizer,whi
h distributed the for
e error over the individual mus
les. Note that due tofeed forward mus
le a
tivation, for
es 
an also be feedba
k 
ontrolled in the nega-tive dire
tion of the individual mus
le axis. The 
al
ulated individual mus
le for
eerrors were fed ba
k with the individual mus
le 
ontrollers. A s
hemati
 overviewof feedforward and feedba
k 
ontrol paths is shown in �gure 3.3.38
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-Figure 3.3: Blo
k diagram of feedforward and feedba
k thumb for
e 
ontroller. Stimulation for three individual mus
les is 
al
ulated based on a referen
efor
e. For
e distribution over the mus
les is 
al
ulated by solving a QP problem as shown in 3.5 indi
ated by the 'QP' blo
ks. These QP solvers take thepreviously determined for
e map and also boundaries on the re
ruitment into a

ount. For 
larity this is left out in the s
hemati
. The bounds for thefeedforward QP problem are [0,1℄. The bounds for the feedba
k QP problem depend on the 
urrent a
tivation of the mus
le (from both feedforward andfeedba
k path) and indi
ate the remainder of the operating range ([0,1℄) and 
an thus also be negative when the spe
i�
 mus
le is already a
tive. In thefeedba
k path a PI 
ontroller was used for ea
h individual mus
le for
e. When using a 
ombination of feedforward and feedba
k 
ontrol, the feedforwardpath was redu
ed by a fa
tor K = 0.8 to prevent overshoot and let the feedba
k path 
ompensate for the remainder. When evaluating the feedforward
ontrol performan
e without feedba
k, K was set to 1.39
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Performan
e analysisRMS errors were 
al
ulated from the magnitude of the error ve
tor between mea-sured mus
le for
e during the initialisation pro
edure and mus
le for
e estimatebased on the obtained parameters. In addition, the area of the theoreti
al workrange resulting from the mus
le for
e ve
tors obtained during the �rst initializationpro
edure was 
al
ulated and 
ompared between subje
ts.An important fa
tor for the 
ontrollability is the rate of for
e 
hange relativeto the 
hange of stimulation amplitude for a given mus
le. This fa
tor 
an beexpressed by the maximal slope of the re
ruitment 
urve, 
al
ulated from thederivative of Eq. 3.1, for a give mus
le, i:
slopemax,i =

p1i
4p3i

(3.8)At the end of the session, we repeated the initialization pro
edure to 
he
kfor possible 
hanges in re
ruitment properties. In ea
h repetition the sequen
eof applied amplitudes and sele
ted mus
les was kept the same. Time betweensubsequent initialization pro
edures was approximately 45 minutes. We estimatedthe 
orrelation 
oe�
ients (Spearman's ρ) between the measured for
es and thefor
es predi
ted by the initially obtained model for ea
h subje
ts. This gives anindi
ation of both the predi
tion ability of the model and the repeatability of themethod. To estimate e�e
ts of mus
le fatigue we 
ompared the for
e magnitudesin both initialization pro
edures and 
al
ulated the least squares slope, m, for ea
hsubje
t by:
m =

∑ |Fpre||Fpost |

∑ |Fpre|2
(3.9)In whi
h Fpre and Fpost , are the observed for
es during the pro
edures at thebeginning and the end of the session, respe
tively. The for
es are summed over allapplied input amplitudes during the initialization pro
edure. The slope, m, is anestimate of the ratio between initial for
e generation and �nal for
e generation fora given mus
le.Single mus
le 
ontrol performan
es were evaluated based on the sine tra
kingtasks. RMS errors between the a
tual and referen
e for
es were 
al
ulated. The2D 
ontroller performan
es were evaluated based on the stationary error of theresponses. This stationary error was de�ned as the average magnitude of thefor
e error ve
tor during the last 10 per
ent of the in total 5 se
onds lasting stepresponse.Due to the relatively small sample size, non-parametri
 statisti
s was applied.We used Mann Whitney U tests to statisti
ally evaluate improvement with feedba
k
ontrol over feedforward 
ontrol only and also to evaluate performan
e in strokesubje
ts with respe
t to healthy subje
ts.40
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3.3 Results3.3.1 For
e ve
tor mapsResults of the initialization pro
edures for all subje
ts and all repetitions are sum-marized in �gure 3.4. Figure 3.5 shows the distribution of theoreti
al workspa
earea based on the determined mus
le for
e maps for healthy subje
ts and strokesubje
ts. The workspa
e area was larger in healthy subje
ts, 
ompared to strokesubje
ts: p=0.06 and p=0.02 for �rst and se
ond initialization pro
edure respe
-tively. RMS errors for the predi
ted for
e ve
tors were 0.10±0.02 N, 0.17±0.09 Nand 0.19±0.11 N on average for the healthy subje
ts for AbPL, OpP and FPB,respe
tively. For the stroke subje
ts, the RMS errors were 0.66± 0.12 N and
0.79± 0.26 N for OpP and FPB, respe
tively. The AbPL mus
le was only a
-tivated in S4 and S5, RMS errors were 0.14 N and 0.26 N for these subje
tsrespe
tively. Maximal slopes of the re
ruitment 
urves in healthy subje
ts were
0.18±0.06 N/A, 0.17±0.06 N/A and 0.70±0.52 N/A for AbPL, OpP and FPBrespe
tively. For the stroke subje
ts the maximal slopes were 0.09±0.06 N/A and
0.69±0.43 N/A for OpP and FPB respe
tively. The maximal slopes for the AbPLin subje
ts S4 and S5 were 0.07 N/A and 0.06 N/A respe
tively.Correlations 
oe�
ients between predi
ted and measured for
es are shown intable 3.2 for both initialization pro
edures. The estimated for
e generation ratio'sbetween �rst and se
ond initialization pro
edure in healthy subje
ts were 0.87±
0.25, 0.93±0.10 and 0.97±0.06 for AbPL, OpP and FPB respe
tively. For thestroke subje
ts the ratio's were estimated at 0.14±0.09 and 0.31±0.14 for OpPand FPB, respe
tively. For the AbPL mus
le, the ratio's were 0.35 and 0.29 forsubje
ts S4 and S5 respe
tively.3.3.2 For
e 
ontroller evaluationSingle mus
le 
ontrollersThe averaged proportional gain over all healthy subje
ts was 0.22± 0.28. Forthe stroke subje
ts the average proportional gain was 1.04±1.16, note that thesevalues are dimensionless as the feedba
k 
ontroller has a for
e both as input andas output, sin
e the inverse re
ruitment is pla
ed after the 
ontroller. The averageintegral times were 0.56±0.12s and 0.62±0.45s for healthy subje
ts and strokesubje
ts respe
tively.During the single mus
le 
ontrol experiments, some saturation e�e
ts (stim-ulation rea
hing predetermined maximal amplitude) were observed, leading to anon-linear feedba
k system. Disregarding the 
ases were this saturation o

urred,the estimated 
ontroller gains were 0.17±0.12 and 0.57±0.12s on average for allsubje
ts for proportional gain and integral time respe
tively.Results of the sine tra
king experiments for the individual mus
le feedba
k
ontrollers are shown in �gure 3.6. Results for healthy subje
ts and stroke subje
tsare shown separately. RMS tra
king errors for the healthy subje
ts were 0.30±0.07N, 0.29±0.06 N and 0.50±0.25 N for AbPL, OpP and FPB respe
tively. Forthe stroke subje
ts, RMS errors were similar: 0.31±0.03 N, 0.37± 0.10 N and41
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H2 H3 H4 H5 S1 S2 S3 S4 S5

AbPL OpP FPB workspaceFigure 3.4: For
e ve
tor map determination. For
e map data in subsequent for
e map measurements ('Start' and 'End' of experiment) for all (H)ealthysubje
ts and all (S)troke subje
ts. Grey arrows indi
ate maximal for
e for ea
h mus
le, obtained from the initialization pro
edure and the averagemovement dire
tion. Axes were omitted for 
larity, however the axes s
aling was the same in all sub �gures.
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Table 3.2: For
e predi
tionHealthy subje
ts Stroke subje
tsMus
le Pro
edure Fx 
orrelation Fy 
orrelation Fx 
orrelation Fy 
orrelationAbPL initial 0.72±0.19 0.83±0.11 0.95±0.02 0.39±0.09�nal 0.61±0.22 0.77±0.14 0.84±0.22 −0.44±0.79OpP initial 0.80±0.13 0.73±0.31 0.51±0.56 0.79±0.09�nal 0.73±0.14 0.63±0.33 0.58±0.28 0.69±0.32FPB initial 0.88±0.06 0.92±0.06 0.47±0.20 0.82±0.24�nal 0.86±0.05 0.87±0.10 0.59±0.27 0.78±0.27Correlations between predi
ted for
es and measured for
es during initialization pro
edures at start (initial) and end (�nal) of session
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al workspa
e area for healthy subje
ts andstroke subje
ts. Workspa
es 
al
ulated based on determined maximal mus
le for
es and mus
ledire
tions during the �rst initialization (Start) and the se
ond initialization pro
edure (End)
0.52± 0.22 N for AbPL, OpP and FPB respe
tively. For subje
ts S1, S2 andS3 the AbPL mus
le 
ould not be targeted properly, therefore the AbPL tra
kingmeasurements were skipped for these subje
ts.Combined mus
le 
ontrollers2D step responses for the best (H5) and worst (H1) healthy subje
t and best (S4)and worst (S2) stroke subje
t are shown in �gure 3.7. Time series of stepresponsesto a single 0.5 N target and a single 1.0 N target for H5 and S4 are shown in�gure 3.8. Responses over all subje
t are summarized in bar plots of stationaryerrors, shown in �gure 3.9. The stationary errors were averaged over all targetswithin a group. Results were grouped by 
ontrol type, target magnitude and subje
ttype. With feedba
k enabled, redu
tion in stationary errors was observed for thestroke subje
ts for the 0.5 N targets (p<0.1). Feedforward performan
e was lessin stroke subje
ts, 
ompared to the healthy subje
ts (p=0.05 and p<0.01 for the0.5 N and 1.0 N targets respe
tively). The stationary errors were larger for the0.5 N targets 
ompared to the 1.0 N targets when normalized to the target for
es(p<0.01) with feedforward 
ontrol in healthy subje
ts. No signi�
ant di�eren
esin stationary errors were observed between the two target levels for the strokesubje
ts.3.4 Dis
ussionWe showed the possibility to des
ribe responses to ele
tri
al stimulation of indi-vidual thumb mus
les as a for
e ve
tor map with a single a
tivation dire
tion anda sigmoidal re
ruitment 
urve. As expe
ted the variability between subje
ts is rel-atively large (�gure 3.4) due to anatomi
al di�eren
es. As a result, for
e mapsalways need to be determined for ea
h individual subje
t. Within subje
t the re-sults are repeatable, demonstrating the feasibility of our approa
h (�gure 3.4 and44
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Figure 3.6: Individual mus
le 
ontrol. Sine (0.5 Hz) tra
king results averaged over all healthy subje
ts (left) and over all stroke subje
ts (right). Resultsshown for the three sele
ted mus
les: Abdu
tor Polli
is Longus (AbPL), Opponens Polli
is (OpP) and Flexor Polli
is Brevis (FPB) and for feedba
k
ontrol only. The mean over all subje
ts is shown by the solid line, shaded areas indi
ate the standard deviation. For AbPL only data for S4 and S5 isshown in (b), as in the other stroke subje
ts this mus
le 
ould not be a
tivated.45
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t. Top panes of ea
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ir
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e response.
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table 3.2). Note that for subsequent sessions it is required to redo the initializa-tion, sin
e the response is highly dependent on exa
t ele
trode position (Chapter2). However, in stroke subje
ts the AbPL mus
le was di�
ult to target. In thesubje
ts in whi
h we were able to target the mus
le initially, the responses duringthe se
ond initialization pro
edure di�ered greatly from the initial pro
edure as in-di
ated by the low 
orrelation 
oe�
ients in table 3.2 and in �gure 3.4. Thereforethe AbPL mus
le seems less reliable for use in 2D for
e 
ontrol tasks 
ompared tothe other mus
les.The load sharing approa
h resulted in the mus
le being pulled ni
ely towardsthe target for
e by the feedba
k 
ontroller. Sin
e the error ve
tor was used as inputfor the feedba
k load sharing, the appropriate ratio of mus
le a
tivations was 
al-
ulated to generate for
e in the right dire
tion. To our knowledge this load sharingapproa
h is a novel appli
ation in ele
tri
ally stimulated mus
le. In our opinionthis 
ould be an appropriate solution to solve redundan
y problems in a
tivation ofmulti-dimensional mus
uloskeletal systems with FES and simultaneously take theboundaries of the individual for
e sour
es into a

ount. The variation of 
ontrollergains over di�erent mus
les and di�erent subje
ts was low, whi
h gives the pos-sibility to use �xed values for these parameters when applying the methodologypresented here. Either as a true �xed value of as a starting point for further �netuning instead of the methods suggested by Ziegler and Ni
hols (1942) whi
h were
urrently used. Thereby further redu
ing the tunable parameters and setup time.Performan
e of the 2D feedforward for
e 
ontroller was worse for the strokesubje
ts 
ompared to the healthy subje
ts. For the stroke subje
ts, adding feed-ba
k terms redu
ed stationary errors. For the healthy subje
ts the di�eren
es be-tween feedforward 
ontrol only and 
ombined with feedba
k 
ontrol were small, see�gure 3.9. However, depending on the model a

ura
y of the individual mus
le'sinput-output relation, the feedba
k 
ontroller also redu
ed the 
ontrol performan
ein 
ertain 
ases. An example of this 
an be observed from �gure 3.7 where thefeedba
k 
ontroller negatively in�uen
es the for
e dire
tion for the 0.5 N targets.This is likely a result of a mismat
h in the FPB model, 
ausing the thumb beingpulled in a more negative dire
tion than needed. Therefore we re
ommend esti-mating model a

ura
y before starting the 
ontrol trials, and redo the initializationif ne
essary.3.4.1 LimitationsWe measured for
es in two dire
tions in a plane perpendi
ular to the thumb. There-fore we negle
ted the for
es perpendi
ular to this plane. Due to this fa
t we mighthave made some errors in absolute for
e re
ordings. However, sin
e we are using thesame setup in both model identi�
ation and 
ontrol, we expe
t that the in�uen
eof these non-measured for
es on our performan
e observations are minimal.For
es in unmeasured dire
tion 
ould have led to the relatively low observedfor
es 
ompared to other studies (Lujan and Crago 2009). However, we expe
tthat these unmeasured for
es were small. The stimulated mus
les are responsiblefor thumb movement Therefore the for
e 
omponent in line with the thumb will be49
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small 
ompared to the perpendi
ular for
e 
omponents. A more likely 
ause is thefa
t that we aimed at sele
tive a
tivation with small ele
trodes leading to relativelylow 
urrent densities and low mus
le a
tivation. Even though the observed for
esand the evaluated targets of 0.5 N and 1.0 N are relatively low, they are su�
ient forpositioning the thumb for fun
tional grasping of obje
ts 
ompared to the evaluatedfor
e levels during grasping in (Flanagan et al. 1999; Singh et al. 2013). Re
ently,we have shown appli
ability of a similar approa
h during grasp and release of obje
ts(Westerveld et al. 2012).In all subje
ts, the FPB mus
le showed a steep re
ruitment 
urve: when thestimulation 
ame above threshold for
e in
rease was high for an in
rease in stimula-tion amplitude. This will have resulted in a bigger in�uen
e of FPB modeling errorson the output for
e errors. The steeper re
ruitment 
ompared to other mus
les islikely a result from di�eren
es in neural innervation. The FPB mus
le is innervatedfrom the re
urrent bran
h of the median nerve whi
h is very super�
ial before en-tering the FPB mus
le. The OpP mus
le is innervated by the same nerve bran
h,but laterally the bran
h runs less super�
ial (Kozin 1998). The AbPL mus
le isinnervated by the posterior interosseus nerve whi
h is also less super�
ial.We redu
ed the experiment length by only testing spe
i�
 points along there
ruitment 
urve during the initialization phase. We did not spe
i�
ally optimizethis method of re
ruitment 
urve sampling. However, the results in pilot mea-surements where we 
ompared our 
urrent approa
h with more dense sampling ofthe mus
le re
ruitment resulted in only minor di�eren
es between the obtainedre
ruitment 
urves. Re
ently, S
hearer et al. (2012) 
ompared di�erent methodsof re
ruitment 
urve sampling extensively. Appli
ation of methods des
ribed theremight further improve the a

ura
y of the obtained re
ruitment 
urves of individualmus
les, whi
h then 
ould also improve the a

ura
y of the 
ontrollers.The stroke subje
ts showed smaller workspa
es 
ompared to the healthy sub-je
ts (�gure 3.5). This is likely a result of non-use after stroke, whi
h 
ould havebeen over
ome partially by additional mus
le training prior to the experiment.However, sin
e we only analyzed performan
e from the trials where the targetfor
e ve
tor was within the theoreti
al workspa
e, this has not a�e
ted our 
urrent�ndings.The ARAT s
ores of the stroke subje
ts had a broad range. Therefore thesubje
ts 
annot be 
onsidered as a homogeneous group. However, the emphasizesof the 
urrent approa
h lies on modeling subje
t spe
i�
 re
ruitment relations.Therefore we did not observe lower stimulation responses related to lower ARATs
ores. Furthermore, this is supported by the fa
t that the subje
ts with the bestARAT s
ores showed the smallest theoreti
al work range for the sele
ted mus
les.3.4.2 Physiologi
al aspe
tsWe expe
t the remainder of the variation to have a physiologi
al 
ause. The mostlikely one is a non-linear additive relation between the individual mus
le dire
tionsand re
ruitments. We expe
t that the linear addition of individual for
e magnitudesto predi
t the resulting for
e agnitude had the largest in�uen
e.50
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3.4.3 Related workLujan and Crago (2009) were able to 
ontrol the thumb for
es in two dire
tionsby using an arti�
ial neural network. They also observed di�eren
es between themeasured for
e of 
ombined mus
le a
tivation and the sum of the individual 
om-ponents, whi
h suggested a nonlinear additive relation. Lujan and Crago stimulateddi�erent mus
les (Extensor Polli
is Longus, Abdu
tor Polli
is Brevis and Addu
-tor Polli
is). The evoked for
es in that study are about �ve times higher thanthe for
es whi
h we found, possibly 
aused by higher stimulation frequen
ies (50Hz 
ompared to 30 Hz in our study) and the di�erent set of stimulated mus
les.This makes a good 
omparison between results di�
ult. Lujan and Crago onlyreport 2D 
ontrol RMS errors of one healthy subje
t and one spinal 
ord injured(SCI) patient, having implanted ele
trodes. The RMS error of the SCI patientwas 0.89 N, whi
h is very low 
ompared to our results in stroke subje
ts whenrelating to the a
hieved for
e range. However implanted ele
trodes are known toprodu
e higher mus
le sele
tivity and more dire
t mus
le a
tivation, whi
h makesthis 
omparison unfair. The healthy subje
t they presented showed an RMS errorof 2.65 N, whi
h is (taking the fa
tor 5 into a

ount) within the same range as thestationary RMS errors we observed. However, we were able to obtain that similarperforman
e without training and optimizing an arti�
ial neural network but witha more transparent model 
onsisting of only four parameters per mus
le.S
hearer et al. (2012) re
ently published a single 
ase study on 
ontrollingmultiple degrees of freedom (in the shoulder) in a SCI subje
t with implantedele
trodes using a feedforward 
ontroller. They also solved for redundan
y byusing a quadrati
 program and showed initial RMS errors of 5.29 N. As shouldermus
les are mu
h stronger than thumb mus
les, this value is again di�
ult to
ompare with our results. Given the range of their target for
es (−18 N to 4.5 Nin the x dire
tion, −18 N to 22.5 N in the y dire
tion and −9 N to 0 N in the zdire
tion) one 
ould say that the performan
e of their 
ontroller was slightly betterthan ours, whi
h seems logi
al given the fa
t that the ele
trodes used by S
hearerand 
olleagues were implanted. Therefore their stimulation was likely to result inmore sele
tive and a

urate a
tivation of individual mus
les. In addition, S
heareret al suggest to improve the performan
e by adding a feedba
k 
ontroller, whi
his exa
tly what we did in the 
urrent study. We showed that adding the feedba
kpath 
an indeed improve performan
e when the feedforward model is not a

urateenough.3.4.4 Clini
al impli
ationsThis study is a framework for evaluating multi-dimensional 
ontrol of joints withele
tri
al stimulation. To be 
lini
ally appli
able in post-stroke rehabilitation, themethod needs several extensions. First of all, we 
urrently addressed only thumbmus
les. For fun
tional grasp and release training the �nger mus
les are of 
ourseequally important. However, 
ompared to the thumb, those joints do not havethe redundan
y in a
tuation: mainly one extensor mus
le and one super�
ial �exormus
le. Therefore the 
urrent method 
ould easily be extended to the �ngers,51
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whi
h we also evaluated re
ently (Westerveld et al. 2012).When using additional ele
trodes for (sele
tive) �nger �exion and extension, thenumber of ele
trodes will in
rease qui
kly. Sin
e, ele
trode pla
ement is subje
tdependent and 
an be time 
onsuming, the time required for setup will also in
reaserapidly. From a pra
ti
al point of view, time 
an be gained with the appli
ationof ele
trode arrays and an approa
h to automati
ally sear
h for proper ele
trodelo
ations (Male²evi¢ et al. 2012).Finally, the relations between stimulation and movement and 
ontrol of move-ment for grasp and release are also important. However proper for
e 
ontrol isa fundamental prerequisite for proper 
ontrol of movement. Therefore the 
ur-rent study 
an be seen as an intermediate step towards an approa
h for assistinggrasp and release movements and next steps in our resear
h will fo
us on dire
tlymapping mus
le a
tivation to evoked movements.Stroke subje
ts showed a limited workspa
e in our study. Sin
e they did nothave severe spasti
ity, it is likely that their mus
le for
e have de
reased dramati
allydue to long time non-use after their stroke. Therefore, we expe
t that results inmore a
ute stroke subje
ts lie 
loser to those of the healthy subje
ts in the 
urrentexperiment. However, this needs further evaluation and likely a subje
t spe
i�
approa
h will lead to the best results.3.5 Con
lusionThe aim of this study was to evaluate the possibility to predi
t thumb mus
lefor
e responses to FES and to 
ontrol thumb mus
le for
e in 2D in both healthyand stroke subje
ts. For a single mus
le, the stati
 relation between mus
le for
eand a
tivation was des
ribed by a sigmoidal mus
le re
ruitment 
urve and a singledire
tion of for
e. Subsequently, load sharing was used to 
ombine the a
tivationof individual mus
les to a
tively 
ontrol thumb for
e in 2D.From our results we 
an 
on
lude that it is possible to des
ribe the thumbmus
le responses to FES by a single for
e dire
tion and a sigmoidal re
ruitment
urve. The large variations between subje
ts indi
ate that these for
e maps arehighly subje
t spe
i�
, likely due to anatomi
al di�eren
es, requiring an individualapproa
h. The relatively small variation within subje
ts demonstrates the feasibilityand time-invarian
e of our approa
h. E�e
ts of mus
le fatigue were observed,espe
ially in stroke patients, so the approa
h presented here is appli
able mainlyfor short sessions (up to 30 minutes).To our knowledge this is the �rst study applying a load sharing paradigm in
ontrolling multiple mus
les with surfa
e FES in a multidimensional biome
hani
alsystem. The load sharing approa
h 
ontrolled the thumb towards the target for
esin the 2D 
ontrol experiments. With feedforward for
e 
ontrol only, errors werelarger in stroke subje
ts, 
ompared to healthy subje
ts. However, with addedfeedba
k 
ontrol, signi�
ant di�eren
es in 
ontrol performan
e had disappeared.Therefore the methodology for multi-dimensional feedba
k for
e 
ontrol presentedhere has potential appli
ability as part of post stroke rehabilitation te
hniques.Espe
ially when applied earlier after stroke and mus
les are stronger.52
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Abstra
tSurfa
e fun
tional ele
tri
al stimulation (FES) is 
ommonly employed in the rehabilitationof patients with impairments of upper limb motor 
ontrol due to stroke. In general, a limitednumber of stimulation ele
trodes is used mostly in open loop 
ontrol only. We aim to extentthe presently available stimulation te
hniques to the use of a 
losed loop model predi
tive
ontrol (MPC) allowing for the use of an extended number of ele
trodes to a
hieve sele
tive�nger movements and pre
ise position 
ontrol over di�erent grasp types.The movements of thumb, index, middle and ring �nger were 
ontrolled by an MPC algo-rithm using an underlying state spa
e model whi
h was obtained in a pre
eding initializationpro
edure. The system was validated in four healthy and three stroke subje
ts using setpointtra
king and fun
tional grasping tasks su
h as hand opening, 
ylindri
al- and pin
h-grip.We show that the proposed system is able to tra
k angular setpoints for ea
h �nger withan error of 8.3°± 2.9° and 6.7°± 1.7° for stroke and healthy subje
ts respe
tively, andsu

essfully generate fun
tional movements to grasp and release a variety of smaller andbigger obje
ts.With the designed MPC approa
h, it is possible to assist fun
tional and smooth graspingmovements for both stroke and healthy subje
ts. The approa
h is therefore highly suitablefor appli
ation in a fun
tional training environment aimed at regaining hand fun
tion afterstroke.56
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4.1 Introdu
tionStroke is one of the leading 
auses of upper limb impairment in the western world. A
ommonly a�e
ted area in the brain is the motor 
ortex resulting in an impairmentof upper and lower limb motor 
ontrol 
ontralateral to the a�e
ted hemisphere.However espe
ially the fun
tioning of the hand is essential for the dire
t intera
tionwith our environment e.g. obje
t manipulation, eating, drinking, walking, personalhygiene and many other a
tivities. An impairment of those fun
tions represents amajor burden to those a�e
ted in performing a
tivities of daily life (ADL).To improve the quality of life after stroke, in
reasing e�orts have been madeto extend the available methods for rehabilitation of the impaired neural pathwayswith the goal of restoring as mu
h as possible of the previously available motor
ontrol. Methods whi
h have a
tively been used in the neural rehabilitation ofstroke patients in
lude neurodevelopmental te
hniques, proprio
eptive neuromus-
ular fa
ilitation, robot assisted therapy, biofeedba
k, mirror therapy, 
onstrainedintensive movement therapy and ele
tri
al stimulation (DeLisa 1988).This paper fo
uses on the use of fun
tional ele
tri
al stimulation (FES) to a
-tivate the peripheral motor system. Thereby a�erent signals are evoked by theele
tri
al stimulus in addition to e�erent signals whi
h a
tivate the mus
les. Addi-tionally to dire
tly a
tivating e�erent and a�erent axons, the resulting movementevokes proprio
eptive feedba
k that stems from Mus
le-Spindles and Golgi TendonOrgans. This represents an advantage of FES with respe
t to methods in whi
hthe impaired extremities are only moved passively e.g. when moved manually bya physiotherapist. During FES the mus
les are a
tively involved in performing thedesired movement to a mu
h higher degree 
ompared to passive movements. Thisin turn prevents mus
ular degeneration and aids a faster re
overy of the 
entralnervous system (CNS) (DB Popovi¢ et al. 2009). Thereby several studies havereported a positive, statisti
ally signi�
ant e�e
t of FES on motor relearning after
erebrovas
ular a

ident (CVA) in the a
ute state and at least minor improvementsin a later suba
ute or 
hroni
 state (X Hu et al. 2010; Hara 2008; MK Chan et al.2009; Shindo et al. 2011; Thrasher et al. 2008; DB Popovi¢ et al. 2009).Present 
ommer
ially available surfa
e FES systems that are used in the reha-bilitation of grasping fun
tions in stroke patients in
lude the NESS Handmaster(NESS Ltd., Ra'anana, Israel), the Bioni
 Glove (Pro
hazka et al. 1997) and theNeuromove 900 (Biomation, Almonte, Ontario, Canada). However all of thosedevelopments rely on simple feedforward pro
edures using only a small amount ofele
trodes positioned on the forearm. These systems merely evoke simple fun
tionalmovements su
h as hand opening and 
losing without mu
h room for sele
tivity.This is predominantly related to the 
omplex anatomi
al nature of the forearmmaking it 
hallenging to sele
tively target spe
i�
 low level fun
tions su
h as sin-gle �nger movements. Current resear
h of our group is fo
using on extending thepresent te
hniques to more sophisti
ated stimulation pro
edures. This is a
hievedby raising the number of ele
trodes to a total of nine whi
h in
reases stimulation�exibility to improve the possible training e�e
t of su
h FES devi
es and simulta-neously in
rease usability for home appli
ation (Westerveld et al. 2012). 57
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Table 4.1: List of all parti
ipating subje
ts.Subje
t Sex Age Months sin
e Stroke ARAT A�e
t. SideHealthy M 26 n/a n/a n/aF 21 n/a n/a n/aF 22 n/a n/a n/aM 58 n/a n/a n/aStroke M 60 147 3 RM 68 36 28 LM 67 38 25 LSimilar work has been reported e.g. by Keller et. al. who developed a sur-fa
e FES system that was able to sele
tively produ
e �nger and wrist for
es underisometri
 
onditions based on a previously estimated Hammerstein model. Thisapproa
h also in
luded a pro
edure for automati
 re
ognition for the optimal stim-ulation ele
trode positions and re
ursive model adaptation to 
ompensate fatigue(Keller et al. 2006). It however did not in
lude the 
ontrol of movement.The present study aims to investigate the feasibility of a model predi
tive 
on-trol algorithm (MPC) 
ontrolling individual �nger movements and a 
orrespondingsystem model in order to extent the present te
hniques for fun
tional ele
tri
alstimulation in stroke patient rehabilitation. MPC 
an 
onveniently be used to 
on-trol a multiple-input multiple-output (MIMO) system based on the supplied systemmodel. Also additional requirements su
h as 
ontrol 
onstraints, re
ursive modelupdates due to 
hanging system 
onditions or system nonlinearities 
an easily betaken into a

ount and adjusted within a short time period.In addition to the use of a more 
omplex 
ontrol pro
edure, it is investigatedwhether it is possible to pro�t from an in
reased number of stimulating ele
trodes.This is likely to improve sele
tivity and therefore making it possible to a
hieve qual-itatively better fun
tional movements during training. Espe
ially movement fun
-tionality is important in this matter and represents the 
ore goal of the te
hniqueas the goal is to a
hieve movements for grasping and manipulation of obje
ts. Theproposed system is hypothesized to be able to perform two di�erent grasp types,namely pin
h and 
ylindri
al grip, whi
h is tested in both pure setpoint tra
kingtasks, performed in air, and fun
tional grasping experiments.4.2 Methods4.2.1 Subje
tsFour healthy and three stroke subje
ts parti
ipated in the experimental study. Allparti
ipants signed an informed 
onsent form and the proto
ol was approved bythe lo
al medi
al ethi
al 
ommittee. Details of all subje
ts are provide in table 4.1.58
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(b)Figure 4.1: Overview of the stimulation system. a) Initialization pro
edure: the forearm wasstimulated by prede�ned amplitude patterns I while re
ording the resulting movements x. Subse-quently the stimulation amplitudes I and �nger angles were used for o�ine model estimation. b)Feedba
k 
ontrol system: The model predi
tive 
ontroller uses the 
urrent angular positions θ aswell as the setpoint referen
es θre f to 
al
ulate the optimal future stimulation amplitudes I. Inboth, initialization and 
ontrol, one stimulator was dedi
ated to 
ontrolling the thumb mus
leswhereas the other stimulator 
ontrolled �exor and extensor mus
les. Swit
hing was 
ontrolledby a prede�ned internal pro
edure: as needed for initialization (a) or during 
ontrol, extensorswere sele
ted for hand opening, �exors for any grasp type (b). In addition, during 
ontrol themaximum amplitude 
onstraints of the ina
tive 
ontroller outputs were set to zero to ensure safeoperation.4.2.2 Experimental SetupFigure 4.1 shows a s
hemati
 overview of the overall experimental pro
edure. It isbased on the employment of two ele
tri
al stimulators, an opti
al motion 
apturesystem and the model predi
tive 
ontroller whi
h is embedded on an xP
 real-timeplatform. Both ele
tri
al stimulators were able to supply three independent 
urrent
ontrolled 
hannels for stimulation of the forearm. A more detailed des
ription ofthese 
omponents is given in the subsequent se
tions.The entire pro
edure 
onsists of initialization period during whi
h the forearmwere stimulated by prede�ned amplitude patterns I, while re
ording the resultingmovements x. Subsequently the stimulation amplitudes I and �nger angles wereused for o�ine model estimation. Se
ondly the the model predi
tive 
ontroller usesthe 
urrent angular positions θ as well as the setpoint referen
es θre f to 
al
ulate59
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padded straps

vertical plate,

restricting sideways 

movementFigure 4.2: Illustration of the arm rest. The elbow as well as the wrist are rested on paddedground whereby most of the forearm is left free of support to improve a

essibility for ele
trodeatta
hment. The wrist is held in pla
e in between a �xed verti
al plate as well as padded strapsto prevent transverse and rotational movement.the optimal future stimulation amplitudes I.To extend the number of individual 
hannels, given by the two ele
tri
al stim-ulators one stimulator was dedi
ated to 
ontrolling the thumb mus
les whereasthe other stimulator 
ontrolled �exor and extensor mus
les, swit
hing betweenextensor- and �exor- ele
trodes a

ording to the task (hand movement) or whenneeded during initialization. Additionally, during MPC 
ontrol the maximum am-plitude 
onstraints of the 
orresponding 
ontroller outputs were set to zero todea
tivate the unused outputs and ensure safe operation. Both was handled by a
entral 
ontrol unit, whi
h employed prede�ned rules a

ording to whi
h extensorsor �exors outputs were sele
ted for hand opening or 
losing, as well as setting theappropriate maximum amplitudes.To 
onstrain the movement of arm and hand, or pla
e the hand in the 
or-re
t position during the experiment, the arm was �xated in a 
onstraining devi
e,mounted to an ordinary desk 
hair (�gure 4.2). In 
ase of the subje
ts' inabilityto keep the hand in a pronated position, the forearm 
ould be �xated to a verti
alplate using padded straps. This however did not limit wrist or hand movement inany way.4.2.3 Ele
tri
al StimulationHardwareTwo 
ustom build stimulators (TIC Medizin, Dorsten, Germany), equipped with anoverall of 6 individual physi
al 
hannels for whi
h the amplitude 
ould be modulated60
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(a)
(b)Figure 4.3: Pi
tures of forearm with ele
trodes atta
hed. All ele
trodes are marked with numbers
orresponding to the des
ription in table 4.2.individually. The two stimulators were 
apable of stimulating with a pulsewidth of80µs to 300µs (in
r. of 10µs), amplitudes of 0mA to 60mA (in
r. of 1mA),frequen
ies ranging from 2Hz to 100Hz (in
r. of 1Hz) with amplitude ramp uptimes of 0 se
 to 10 se
 (in
r. of 0.1 se
). Three 
hannels were designated totarget the thumb mus
les and the remaining three 
hannels stimulated �exors andextensor mus
les. To a
hieve an overall of 9 possible stimulating 
hannels, �exorand extensor ele
trodes were pairwise atta
hed to the same 
hannels and swit
hedba
k and forth for �exion and extension respe
tively. Pulsewidth and frequen
ywere equal on all 
hannels and left 
onstant. Stimulator pulses were biphasi
in order to prevent undesired a

umulation of 
harge at the interfa
e betweenstimulation ele
trodes and tissue.Ele
trode Pla
ementSelf-adhesive ele
trodes were pla
ed on the forearm, whereby a squared ele
trode of5 
m was used as the anode and a re
tangular ele
trode of 1.6x1.8 
m was used asthe 
athode. The pla
ement was 
ondu
ted manually whereby the single ele
trodeswere positioned a

ording to the s
heme in �gure 4.3 su
h that the a
tivation ofea
h ele
trode 
ould evoke movement with maximum sele
tivity. The term sele
-tivity was de�ned by maximizing the resulting desired movement of a single �ngerwhile minimizing the movement of all other digits. This pro
edure was 
ondu
tedmanually and 
ontrolled by visual inspe
tion. Table 4.2 gives an overview of allpla
ed ele
trodes, their targeted mus
le as well as the desired resulting movement.61
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Table 4.2: Overview of all stimulating ele
trodes, their 
orresponding mus
le and resulting move-ment.Ele
trode Mus
le Desired Movement1 EDC Index Extension2 EDC Middle/Ring Extension3 EDC Ring/Pinky Extension4 FDS Index Flexion5 FDS Middle Flexion6 FDS Ring Flexion7 AbPl Thumb Abdu
tion8 OpP Thumb Opposition9 FPB Thumb FlexionG - Ground
X

Y

Z

Figure 4.4: Marker positions on all �ngers and the ba
k of the hand, whi
h determined the lo
al
oordinate system used. Visible is furthermore the extension on the thumb whi
h was in
ludedin the setup to avoid marker o

lusion during grasping.4.2.4 Motion Capture and Marker pla
ementDuring operation the movement of the hand was re
orded and fed ba
k to theMPC using an opti
al motion 
apture devi
e (Visualeyez, PhoeniX Te
hnologiesIn
orporated, Burnaby, Canada) with a pre
ision of 0.015mm at 1.2m distan
ea

ording to the provided datasheet. Figure 4.4 shows the marker pla
ement onthe hand. The three markers on the ba
k of the hand form a lo
al referen
e
oordinate system a

ording to whi
h the angles of thumb, index, middle and ring�nger were determined. Ea
h angle was 
al
ulated between the ve
tor formedby the two markers on ea
h �nger and the x-y plane on the ba
k of the hand.Negative angular movement was de�ned in dire
tion of �nger �exion. To in
reasethe visibility for the 
amera, the markers for the thumb were not pla
ed dire
tlyon the thumb, but were mounted on a small extension approximately 2 
m aboveand parallel to the thumb. The pla
ement of the markers is mainly due to visibilityreasons, as markers pla
ed on the tip of the �nger would have been prone to get62
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out of 
amera sight as soon as the hand is 
losed whi
h would have led to anglemis
al
ulations and therefore hamper the 
ontrol pro
edure.4.2.5 System Identi�
ation and ControlPre
eding the 
ontrol pro
edure, a model of the system was obtained, whi
h wassubsequently used by the MPC to 
al
ulate the inputs needed to rea
h the de-sired setpoints. This was a
hieved by stimulating the �nger mus
les using stepinputs, between zero and the predetermined ele
trode spe
i�
 maximum stimula-tion amplitudes, and re
ording the resulting movement response for a period ofapproximately 8 minutes.The obtained data was prepro
essed by subtra
ting the mean o�sets, low pass�ltering and pie
ewise detrending to remove nonlinear o�sets and high frequen
ynoise 
omponents. During detrending, interpolation points were given by the timesat whi
h all input signals were zero and therefore any deviation from zero level wasattributed to low frequen
y noise. Subsequently a pie
ewise linear interpolationbetween the 
onse
utive data points was subtra
ted from the signal and the signalwas downsampled to 10Hz.Subsequently the model 
al
ulations were performed using Matlab's SystemIdenti�
ation Toolbox (The MathWorks In
., Nati
k, MA USA). In the present
ase, the system was des
ribed by a 9 input � 5 output linear state spa
e modelof order 15. The model order was determined beforehand by trial and error as wellas residual analysis, su
h that a further in
rease would not de
rease the modelresiduals to a greater extent and was used 
onstant throughout all experiments.The MPC, whi
h was implemented using Matlab's Model Predi
tive ControlToolbox (The MathWorks In
., Nati
k, MA USA), operated at a rate of 10Hz,whi
h was restri
ted by the hardware speed of the real-time 
omputer in use,minimizing the general MPC obje
tive fun
tion J (Bemporad et al. 2010) that, inthis parti
ular 
ase, 
an be redu
ed to the following form:
J(△u j,ε) =

p−1

∑
i=1

(
ny

∑
j=1

|wy
, j(y j(k+ i+1|k)− r j(k+ i+1))|2+

nu

∑
j=1

|w△u
, j △u j(k+ i|k)|2)+ρεε2(4.1)

J is minimized with respe
t to △u(k|k), ...,△u(m− 1+ k|k),ε and des
ribesthe 
ost fun
tion over the 
ontrol horizon p to �nd the appropriate stimulationamplitudes u j for all inputs nu su
h that the angles y j for the number of all outputs
ny rea
h the desired setpoints r j. In order to avoid unpleasant or harmful 
ontrolbehavior the inputs u j and input rates △u j are 
onstrained variables with u jmin = 0and u jmax set to the maximum stimulation amplitude of the equivalent ele
trodewhi
h were determined manually before ea
h experiment, and 0≤△u jmin ≤1whi
his equivalent to a maximum 
hange of amplitude of 1mA per 
ontrol step (100ms).63
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Control and predi
tion horizons were set to 0.5s and 0.6s respe
tively. Inputrate weight w△u
j and output weight wy

, j assign the relative importan
e of input rate
onstraints△u j and setpoint error. Thereby w△u
j = 0.1 for all j and wy = [11122]T .As the thumb does have a smaller angular movement range, its output weightswere set twi
e as high as for the rest of the �ngers in order to aid more a

uratesetpoint tra
king. To add stability to the stimulation behavior and in
rease subje
t
omfort the overall estimation gain was de
reased to 0.4, whi
h is a dimensionlessinternal variable in the generated MPC obje
t. All remaining settings were leftunaltered. The weight ρε penalizes the violation of 
onstraints whi
h is measuredby the sla
k variable ε. As ρε in
reases relative to the input and output weights, the
ontroller gives higher priority to minimization of 
onstraint violations. Either �exoror extensor 
ontrol variable outputs (due to the distribution of ele
trodes a
rossthe 
hannels) were made ina
tive by setting their maximum value 
onstraint tozero, depending on the desired movement. Additionally, internal- and 
losed-loop
ontroller stability were ensured and tested by 
al
ulating the eigenvalues of the
ontrollers un
onstrained state spa
e realization and the dis
rete-time state-spa
e-realization of the 
losed-loop system. Furthermore, stability of the system modelwas tested via examination of its step responses. For a thorough do
umentationof the implemented MPC stru
ture and stability analysis te
hniques please refer to(Bemporad et al. 2010).4.2.6 Experimental Proto
olEle
trode Atta
hment and Model InitializationThroughout the experiment the subje
t was seated in a 
hair with the a�e
ted handresting on the hand-rest in a neutral pro/supinated position as e.g. when holdinga bottle or 
up (�gure 4.2). Depending on the subje
ts own ability to supinate thehand, the wrist was �xated using padded straps. Subsequently all 9 ele
trodes werepla
ed manually a

ording to �gure 4.3 whereby 
orre
t pla
ement was 
on�rmedmat
hing it to the desired responses in table 4.2. Throughout the experiment thestimulation amplitude was restri
ted to a range of 0mA to 30mA, therefore duringthis time also an appropriate stimulation pulse width was determined at whi
hthe stimulation showed signi�
ant movement responses within a range of 0mA to15mA. This was merely a preparational step adjusting stimulation intensity and wasonly 
hanged in 
ase of too little movement response or sele
tivity in the operatingrange. Furthermore the stimulation frequen
y was �xed at 30Hz.An additional pla
ement 
riterion was subje
t 
omfort, whereby it was assuredthat the subje
t's sensation 
aused by the stimulation was not painful or un
omfort-able. As soon as the ele
trode pla
ement was 
ompleted, maximum 
urrent am-plitudes were determined for ea
h ele
trode. The maximum amplitude was de�nedby the amplitude at whi
h any further in
rease would not lead to any signi�
ant
hange in the desired movement response and did not 
ause any un
omfortablesensation to the subje
ts. In 
ases where further in
reasing the amplitude led toan unwanted de
rease of sele
tivity the maximum amplitude was set in favor ofmaintaining sele
tivity.64



Grasp 
ontrol in stroke patients using FES and MPC

4

EvaluationIn order to assess 
ontroller performan
e in terms of setpoint tra
king as well as itsability to a
hieve fun
tional movements, the 
ontroller was set to perform severalsetpoint tra
king tasks in air as well as to grasp a number of obje
ts. The setpointerror is subsequently determined by the root mean squared error of steady state�nger setpoint angles and the resulting 
ontrolled �nger angles.The four obje
ts with whi
h the ability of grasping and holding was determinedwere sele
ted from the ARA-test. These were a small 
ube (2.5
m, 10g), a larger
ube (5
m, 90g) as well as a hollow metal 
ylinder (⊘ 2x15.5
m, 100g) and amarble (⊘ 1.7
m, 5g). The obje
ts were manually pla
ed between the subje
ts'�ngers by the experimenter after whi
h the 
ontroller was instru
ted to grasp theobje
t using either pin
h grip for the marble and the small 
ube, or 
y
lindri
al gripfor the large 
ube and the 
ylinder. For pin
h grip the obje
t was pla
ed in betweenindex and ring �nger or in some 
ases where sele
tive index �nger movement 
ouldnot be a
hieved, between thumb and middle �nger. Su

ess was determined byholding the obje
t for a period of 10 se
onds whi
h was repeated �ve times forea
h obje
t.In terms of setpoint tra
king, the 
ontrollers� ability for tra
king a total of3 setpoints was assessed. These setpoints were prede�ned movement patterns
orresponding to the fun
tional movement types: pin
h grip, 
ylindri
al grip andopening of the hand. Thereby the setpoint tra
king was divided into two separatephases: alternating 10 times between 1) hand opening and 
ylindri
al grip aswell as 2) hand opening and pin
h grip. Ea
h setpoint was held for a period ofapproximately 10 se
onds. Subsequently the measured �nger traje
tories of all 10repetitions were lined up to the setpoint 
hange and averaged 
al
ulating mean andvarian
e for ea
h timestamp on an interval of -1s to 6s with zero being the 
hangefrom hand opening to the 
orresponding setpoint (
ylindri
al or pin
h grip).4.2.7 Data AnalysisEvaluation of Stimulation Sele
tivityTo determine stimulation quality a new measure for sele
tivity was introdu
ed.Thereby the sele
tivity index per ele
trode is expressed by
Se = var(

Me,:

∑NF
f=1 Me, f

)∗NF (4.2)The sele
tivity S of ea
h ele
trode e is given by the maximum response matrix M(with Ne rows and NF 
olumns) of ea
h digit f to stimulation on this ele
trode timesthe number of 
ontrolled �ngers NF . Thereby NF is used as a s
aling fa
tor. Theintensities were normalized to the sum of their 
orresponding row whi
h representsthe overall response to the stimulus per ele
trode. In other words, the sele
tivityof one ele
trode is the varian
e of the movements of all �ngers evoked by thisele
trode, normalized by the total movement and multiplied by the s
aling fa
tor
NF . 65
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Table 4.3: Results of the system identi�
ation pro
edure using the initialization data. Shown arethe mean model �ts (eq.4.3) of the estimated state spa
e model for ea
h angular system output.Healthy [%℄ Stroke [%℄mean sd mean sdThumb Ext. 56 8.3 55 7.5Thumb Abd. 67 6.3 74 4.9Index 68 5.9 51 9.0Middle 66 12.1 63 6.4Ring 64 8.8 60 11.2mean 64 8.3 60 7.5The hereby used sele
tivity index is motivated by its pra
ti
al properties su
hthat in 
ase all resulting movements are equal in amplitude, whi
h 
orresponds tono sele
tivity, S is equal to zero. In 
ase sele
tivity is highest and only one output isa
tivated entirely while leaving all others at zero, S equals one. As thumb extensionand abdu
tion are not independent of ea
h other the Eu
lidean norm was used inorder to 
ombine them and obtain a more meaningful, overall a
tivation measurefor 
omparison.Model and Controller EvaluationThe a

ura
y of a model output ŷ to the previously re
orded observed data y witha number of samples N is estimated by the following formula whi
h expresses thesimilarity of the 
al
ulated model outputs to the measured data (Ljung 2013).Thereby ŷ and y are ve
tors of length N.
f it = (1−

|ŷ− y|

|y− ∑N
i=1yi
N |

)∗100 (4.3)To assess the 
ontroller's potential to be used for performing fun
tional move-ments, it was set to tra
k the same setpoints as when performing the setpointtra
king task. However this time a number of obje
ts were manually pla
ed in thesubje
t's hand for whi
h setpoints did not depend on the size of the obje
t. Asu

essful grasp was indi
ated by the 
ontroller's ability to hold and release theobje
t for a period of 10 se
onds. Thereby the pro
ess was repeated 5 times forea
h obje
t. A single attempt of grasping was awarded with either 1 for su

ess or0 for failure. In the following the su

ess rate is de�ned to be the mean of all trialout
omes. To 
ountera
t voluntary interferen
e, subje
ts with mu
h residual hand
ontrol e.g. all healthy subje
ts were blindfolded and instru
ted to remain relaxedthroughout the pro
edure.66
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Selectivity(b)Figure 4.5: Maximum response matrix M, with intensities normalized to the sum of their 
orre-sponding row as in 4.2, of all targeted �ngers to stimulation on all nine ele
trodes (rows 1-9)for healthy (a) and stroke subje
ts (b). Additionally the index of sele
tivity is given for ea
hstimulating ele
trode, whereby in 
ase the sele
tivity S = 1 is equivalent to a response of only1 �nger to the stimulus indi
ating maximum sele
tivity. Whereas an S = 0 indi
ates an evenlydistributed response of all �ngers. Ele
trode targets are equivalent to table 4.2.4.3 Results4.3.1 Initialization and System Identi�
ationDuring model initialization movement on all �ngers 
ould merely be eli
ited byamplitudes near the maximum. This was espe
ially the 
ase for stroke subje
tswhereas healthy subje
ts showed lower thresholds at approx. 50% max. amplitude.Maximum amplitudes ranged from approx. 16 - 30mA for extensor- and 6 - 20mAfor �exor mus
les. Pulsewidths ranged from 80 - 120 µse
 for healthy and 200 - 250µse
 for stroke subje
ts. During operation a fast onset of diminishing movementresponse was observed in all stroke subje
ts su
h that the pulsewidth was oftenin
reased several times by an overall of 30 - 50 µse
 in order to 
ountera
t thise�e
ts. With the thereafter obtained linear state spa
e model, 10 step predi
tiona

ura
ies given by the model �t of approximately 60-70% were a
hieved. Table 4.3shows the average model a

ura
ies for ea
h output, for stroke and healthy subje
tsrespe
tively. Furthermore, additional analysis and of the MPC obje
ts and real timeperforman
e revealed no issues in terms of 
ontroller or model stability. 67
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Figure 4.6: Averaged setpoint plot for an exemplary healthy subje
t with setpoints going fromhand opening to a) 
ylindri
al grip and b) pin
h grip. Thumb and residual �ngers are separatedgraphi
ally for visibility. Mean varian
e over all �ngers was 1.7°± 0.25° for 
ylindri
al and 3.1°±2.25° for pin
h grip.4.3.2 Sele
tivityFigure 4.5 shows the normalized maximum movement intensity after settling timefor ea
h ele
trode and output. Comparing healthy to stroke subje
ts both groupsshow similar sele
tivity distributions. However the ex
itation of individual �ngermovements is degraded in the 
ase of stroke subje
ts. Parti
ularly it was hardlypossible to a
hieve sele
tive index �exion (resp. to ele
tr. 4 in 4.5b).4.3.3 Setpoint Tra
kingFigure 4.6 shows a typi
al example for setpoint responses averaged over severaltrials and obtained for the 
ylindri
al and pin
h grip task of one healthy subje
t.Thumb and �nger data are shown separately to in
rease visibility. The setpointswere tra
ked with good a

ura
y for all digits in
luding the thumb. Time zerorepresents the setpoint 
hange from hand opening to 
losing. Figure 4.7 shows asimilar example for an exemplary stroke subje
t (ARAT=3). As the subje
t showeda very limited movement range, the setpoints were adjusted a

ordingly. Tra
kingof thumb position hereby showed large o�sets in 
omparison to its movement range.Figure 4.8 shows the average angular range for healthy and stroke subje
ts. Themovement range was de�ned as the maximum possible movement for ea
h �ngeror output dimension, eli
ited by ele
tri
al stimulation. Thereby stroke subje
ts hada smaller movement range in 
omparison to healthy subje
ts. Steady state setpointerrors for hand opening, 
ylindri
al, and pin
h grip averaged over all �ngers of allhealthy and stroke subje
ts 
an be seen in �gure 4.9. In addition to that the steadystate error normalized by movement range is shown on a se
ond axis.Figure 4.10 shows exemplary measured �nger angles, angular setpoints in
lud-ing all nine 
ontrol variables (stimulation 
urrents) and their maximum 
onstraintsduring a setpoint measurement in air, altering between hand opening and pin
h68
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ontrol and a limited angular movement. Meanvarian
e over all �ngers was 1.8°± 0.013°.

�
n

g
e

r 
a

n
g

le
 [

°]

Thum
b A

bd.

In
dex

M
id

dle
Rin

g

Thum
b E

xt.

Thum
b E

xt.

Thum
b A

bd.

In
dex

M
id

dle
Rin

g
0

5

10

15

20

25

StrokeHealthyFigure 4.8: Movement range for ea
h �nger, averaged over all stroke and healthy subje
ts.Movement range was de�ned as the maximum possible movement of ea
h �nger eli
ited byele
tri
al stimulation.
69



Chapter 4

4

st
e

a
d

y
 s

ta
te

e
rr

o
r 

[°
]

st
e

a
d

y
 s

ta
te

 e
rr

o
r

m
a

x 
ra

n
g

e

Pin
ch

Stroke

Cyl.

O
pen

Pin
ch

Healthy

Cyl.

O
pen

0 0

5

10

15

0,1

0,2

0,3

0,4

0,5

Figure 4.9: Mean steady state errors over all �ngers in
luding the thumb during setpoint tra
kingaveraged over all healthy and stroke subje
ts as well as the mean steady state errors normalizedby the movement range.grip. Visible is also how the 
onstraints of outputs 1-6 are altered to multiplexbetween �exion and extension. All 
ontrol variables are normalized by their max-imum boundary 
onstraint. As des
ribed previously, outputs 1-3 and 4-6 
an notbe a
tive at the same time. Note how all �ngers follow their setpoints adequately.Sin
e the setpoints in this 
ase are aiming for sele
tive index �exion only output 4and 5 are a
tive during �exion. Hereby output 4 is sele
tive for index �exion, andtherefore most a
tive, whereas 
hannel 5 is sele
tive for �exion of the middle �ngerand shows merely small a
tivity, likely due to a me
hani
al 
oupling embedded inthe system model (�gure 4.5a). Also, whereas all other outputs hardly 
ome 
loseto their maximum amplitude 
onstraints, output nr. 3 alternated between zero andmaximum amplitude. The reason for this might be that in this 
ase the maximumamplitude was set slightly too low. This way the maximum 
urrent was needed torea
h the desired setpoint. This is evident when regarding the setpoint of the ring�nger, that output 3 is sele
tive for, whi
h is able to rea
h the setpoint only witha larger o�set 
ompared to other �ngers.Errors are divided evenly over all inputs and it was possible to perform thepin
h grip task in all healthy, but merely one stroke subje
t. On all remainingstroke subje
ts sele
tive stimulation for index �exion 
ould not be a
hieved whi
hled to the ex
lusion of the pin
h grip task in those 
ases.Generally, both setpoint error and standard deviation is larger in stroke subje
tsby a fa
tor of about 1.25 and 1.65 respe
tively 
ompared to the observations inhealthy subje
ts.4.3.4 Fun
tional MovementsTable 4.4 shows a 
omparison of the average su

ess rates for grasping for healthyand stroke subje
ts during ele
tri
al stimulation. Thereby the su

ess rate in strokesubje
ts was slightly lower for heavy or small obje
ts su
h as the metal 
ylinderand the marble. Big and small wooden 
ubes were grasped with 100 % su

essrate.70
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Table 4.4: Su

ess rate of grasping experiments in stroke and healthy subje
ts. The numbersde�ne the per
entage of trials in whi
h the obje
t was held su

essfully.Stroke Healthymean sd mean sdMetal Cylinder 75% 21% 95% 1%Marble 75% 5% 100% 0%Big Cube 100% 0% 100% 0%Small Cube 100% 0% 100% 0%4.4 Dis
ussionIn this paper we investigated the feasibility of a model predi
tive 
ontrol approa
hfor the 
ontrol of �ne grasping movements in stroke patients. The aim of thisstudy was to passively generate fun
tional movements to grasp and release obje
tsof di�erent size and shape. We showed that the approa
h 
an produ
e fun
tionalmovements to grasp and release a variety of smaller and bigger obje
ts (Table 4.4).Performan
e in stroke subje
ts was slightly redu
ed, espe
ially for small and heavyobje
ts.Additionally, we showed that it is possible to obtain a system model to predi
t�nger movement with a

ura
ies of approximately 60% to 70% whi
h 
an be usedfor 
ontrol. Also it was shown possible to �nd the desired stimulation positions toa
hieve sele
tive �exion and extension movements of index, middle and ring �ngeras well as the thumb in three di�erent angular dire
tions as shown in �gure 4.5. Theaverage variability in setpoint tra
king of 8.3°± 2.9° and 6.7°± 1.7° for stroke andhealthy subje
ts respe
tively did not have a big impa
t on movement fun
tionality.4.4.1 Related WorkIn terms of movement 
ontrol, the pre
ise positioning of individual �ngers to a
hievea fun
tional movement with the possibility of 
onveniently implementing a varietyof other possible movements for patient training had not been demonstrated so far.However, sele
tive �nger a
tivation and feedba
k 
ontrol of ele
tri
al stimulationhave been des
ribed thoroughly in literature.The results regarding sele
tivity are similar to those obtained in 
hapter 2 ofthis thesis, where the possibility to generate sele
tive �nger extension and thumbmovements by ele
tri
al stimulation using ele
trodes aligned on a grid was shown.Existing 
ontrol methods mainly fo
us on gross motor 
ontrol of wrist and hand(Crago et al. 1996; Hart et al. 1998; Mi
era et al. 2010). With the MPC approa
hpresented here assistan
e of �ne motor 
ontrol with sele
tive �nger stimulationbe
omes available.Current 
ommer
ially available devi
es su
h as the Handmaster or the Neuro-move la
k variability in stimulation patterns, number of ele
trodes and availableindependent 
hannels. Therefore these devi
es are limited in their appli
ation whi
h
ould lead to insu�
ient training paradigms. Our 
urrent approa
h was shown able72
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to 
ontrol individual �nger and hand movements a

urately. This 
ould possiblylead to a better result for the neural re
overy of �ne motor 
ontrol fun
tions.In other systems whi
h make use of a greater number of input ele
trodes tosele
t the optimal ele
trode 
on�guration this is implemented as a separate steppre
eding training similar to the pro
edure des
ribed by us (O'Dwyer et al. 2006;Keller et al. 2006; DB Popovi¢ and MB Popovi¢ 2009; Ho�mann et al. 2012; Elsaify2005). Being able to use a system model, the MPC has an inherent ele
trodesele
tion pro
edure. Therefore even an initial in
orre
t ele
trode pla
ement su
has swit
hing ele
trode order does not have an impa
t on the robustness of thepro
edure. Additionally this makes it possible to easily up-or downs
ale the amountof inputs with minimal additional adjustment time and allows for a patient spe
i�
approa
h.4.4.2 Possibilities for rehabilitationThree pra
ti
al short
omings of the 
urrent methods should be over
ome beforean approa
h like this 
an be applied in post stroke rehabilitation: 1) donningand do�ng is 
umbersome and time 
onsuming, 2) the motion 
apture system isonly suitable for a laboratory setup and 3) the user remains passive in the 
urrentapproa
h. For rehabilitation purposes, the system should be qui
k and easy tosetup by a non-trained user, �nger movement should be re
orded with a simpleand easy to setup system and voluntary e�ort by the user should be promotedto a
hieve a positive training e�e
t (Wolbre
ht et al. 2008; Reinkensmeyer et al.2009; Timmermans et al. 2010).A drawba
k of the method is the strong dependen
y on a large number ofstable ele
trodes on the forearm. We had pla
ed an overall of nine ele
trodeswhereby three groups of three ele
trodes were dedi
ated to 
ontrol thumb, �exorsand extensors respe
tively. Pre
eding the experiments, the ele
trode positionswere sear
hed manually whi
h was subje
tive, 
umbersome and time 
onsuming.Therefore we suggest to repla
e the many single ele
trodes by ele
trode arrays.This has been under development by a number of groups (Male²evi¢ et al. 2012;DB Popovi¢ and MB Popovi¢ 2009; O'Dwyer et al. 2006; Ho�mann et al. 2012).The manual sear
h pro
edure 
ould subsequently taken over by intelligent sear
halgorithms to in
rease usability espe
ially de
reasing the time needed for donningand do�ng.The 
ontroller used 
onstant position information whi
h was 
aptured by amotion tra
king devi
e, mainly suitable for a laboratory environment. For 
lini
alappli
ation a more 
ompa
t and more plug and play solution is needed. Measure-ment gloves (Williams et al. 2000; Simone and Kamper 2005; Veltink et al. 2012;Oess et al. 2012) or 
ommer
ially available devi
es like Mi
rosoft Kine
t (Changet al. 2011) or LEAP motion (Wei
hert et al. 2013) might be used as a moreportable solution for feedba
k of �nger angles.The present system is preprogrammed stri
tly independent of subje
t intention.For appli
ation in rehabilitation, feedba
k me
hanisms to dete
t voluntary subje
ta
tivity is required be more e�e
tive and in
rease the possible re
overy of motor73
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fun
tion (Sinkjær et al. 2003). This has already been done using e.g. EMG ortorque (Hara 2008; Besio 1997; Hin
apie and Kirs
h 2007; XL Hu et al. 2011;Yamagu
hi et al. 1999), but also systems driven by data derived from the 
ortexusing invasive or noninvasive methods are in development (Ethier et al. 2012;Tavella et al. 2010; S
hneiders et al. 2011; Pfurts
heller et al. 2005; Muller-Putzet al. 2008).4.4.3 LimitationsThe su

ess-rate in terms of sele
tivity, fun
tional grasping and setpoint tra
kingwas lower in stroke subje
ts. Also the pulsewidth used in all stroke subje
ts wasabout two times higher to result in a similar a
tivation threshold 
ompared tohealthy subje
ts. This 
ould be attributed to the fa
t that all of them had alreadyentered the 
hroni
 phase whi
h might have resulted in mus
ular degenerations orother a
tive or passive tissue dysfun
tions (Carda et al. 2013). Two of the strokesubje
ts showed signs of spasti
ity (ARAT = 28 and 25) and one showed a signif-i
ant angular movement limitation (ARAT=3). In 
ases where spasms are presentwith di�
ulties to keep the hand in an open/neutral position, the employmentof a passive orthosis su
h as the SaeboFlex system (Saebo In
., Charlotte, NC,USA) 
ould be used. However, this might be less of an issue when the te
hniqueis applied for rehabilitation of a
ute stroke patients. In that group, the 
ontrollersperforman
e is hypothesized to be more similar to that of a healthy subje
t as nosigni�
ant mus
ular degenerations, 
ontra
tures or spasti
ity should have o

urredat this point in time (Carda et al. 2013; Brainin 2013).As visible in table 4.1 the age di�eren
e between the re
ruited healthy andstroke subje
ts was rather high. Therefore one should be 
autious in the dire
t
omparison of both groups. Mus
les in elderly 
ould be weaker as in youngersubje
ts 
aused by mus
ular 
hanges due to age. In addition to that, ele
trode
onta
t might be di�erent in elderly due to a redu
ed skin smoothness. However,inter-subje
t variability in terms of stimulation parameter tuning is always present.The pro
edure is able to over
ome su
h 
hanges by e.g. in
reasing stimulationintensity. Therefore we do not expe
t that di�eren
es in age have in�uen
ed theout
ome of this study to a large extent.Voluntary subje
t interferen
e, espe
ially during the 
ondu
ted obje
t graspingtask 
annot be ex
luded with absolute 
ertainty. Despite the fa
t that all healthysubje
ts were blindfolded and instru
ted to remain relaxed, the possibility of subje
tinterferen
e remains. Future work 
ould in
orporate EMG measurements, togetherwith methods to subtra
t the stimulation artefa
ts (Sennels et al. 1997; Langzamet al. 2006) to ensure that the subje
t is truly passive.All 
ontrollers showed to be both 
losed-loop and internally stable, whi
h isessential to ensure safe performan
e. However mismat
h between the model andthe biologi
al system 
an still lead to unstable situations. This 
ould be avoidedby tuning the 
ontrollers to behave less aggressive whi
h de
reases os
illation andsubje
t dis
omfort and therefore add stability, but this will also hamper setpointtra
king results.74
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The initialization pro
edure was kept rather short to redu
e the total experimentlength. Therefore, all data was used for model 
al
ulation. This 
ould have led toover�tting and therefore might have degraded the result of the 
ontrol pro
edure.The 
ontrol interval had to be set to 100ms be
ause of hardware restri
tionsthis was partly larger than the a
tual time 
onstants of the system. Normallydesirable 
ontrol intervals are well below the systems time 
onstant. This 
ouldhave added ina

ura
ies to setpoint tra
king performan
e, whi
h might be overomeby in
reased 
omputing power.Only angles of the �rst phalanx were measured, to avoid 
amera o

lusion.Therefore most 
ertainly only part of the �ngers states were know a

urately tothe 
ontroller during operation. However due to the 
lose relationship betweenthe movement of ea
h �ngers joints the measured angles were su�
ient to obtainfun
tional movment, whi
h was the main goal of this study.4.5 Con
lusionWe have shown that the designed model predi
tive 
ontrol approa
h 
an lead tofun
tional and smooth movements suitable to grasp, hold and release a variety ofobje
ts in both stroke and healthy subje
ts. The approa
h provides the possibilityof �exing and extending individual �ngers sele
tively and therefore has the ability togenerate a broad range of movements. The pro
edure has potential for appli
ationin a 
lini
al or a home setting supplying a �exible te
hnique for upper limb strokerehabilitation.
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Chapter 5

5 Abstra
tStroke survivors may bene�t from roboti
 assistan
e for relearning of fun
tional movements.Current assistive devi
es are either passive, limited to only two dimensions or very powerful.However, for rea
h training, weight 
ompensation and a little assistan
e with limited poweris su�
ient.We designed and evaluated a novel three dimensional roboti
 manipulator whi
h is ableto support the arm weight and assist fun
tional rea
hing movements. Key points of thedesign are a damper based drive train, giving an inherently safe system and its 
ompa
tand light-weight design.The system is for
e a
tuated with a bandwidth of up to 2.3 Hz, whi
h is su�
ient forfun
tional arm movements. Maximal assistive for
es are 15 N for the up/down and for-ward/ba
kward dire
tions and 10 N for the left/right dire
tion. For
e tra
king errors aresmaller than 1.5 N for all axis and the total weight of the robot is 25 kg. Furthermore, thedevi
e has shown its bene�t for in
reasing rea
hing distan
e in a single 
ase study with astroke subje
t.The newly developed system has the te
hni
al ability to assist the arm during movement,whi
h is a prerequisite for su

essful training of stroke survivors. Therapeuti
 e�e
ts ofthe applied assistan
e need to be further evaluated. However, with its inherent safety andease of use, this newly developed system even has the potential for home based therapeuti
training after stroke.78
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5.1 Introdu
tionR oboti
 systems have found their way into rehabilitation pra
ti
e. Although theexa
t me
hanisms underlying improvement of fun
tion after training with roboti
assistan
e are still un
lear, several studies have shown bene�ts of the use of roboti
devi
es for movement therapy after stroke (Prange et al. 2006). Roboti
 aided ther-apy gives similar results as 
onventional therapy (Kwakkel et al. 2008) and roboti
manipulators fa
ilitate more intensive training and obje
tive measurements (Lumet al. 2002), without the need of a therapist being 
ontinuously present. In�u-en
ed by these positive results, more and more devi
es are being developed fortraining of both upper and lower extremity movement. Re
ently, a Swiss random-ized 
lini
al trial showed that roboti
 therapy for the arm 
an give a signi�
antlylarger improvement 
ompared to 
onventional therapy (Klamroth-Marganska et al.2013). This is a promising result, although the 
osts 
urrently hamper the 
lini
aluse (Kwakkel and Meskers 2013). Therefore, more simple and a�ordable roboti
devi
es are desirable for rehabilitation pra
ti
e.Three re
ent reviews (Loureiro et al. 2011; Brewer et al. 2007; Riener et al.2005) provide an extensive overview of upper extremity rehabilitation roboti
s.Most of these devi
es are a
ademi
 prototypes and not 
ommer
ially available.A distin
tion in me
hani
al design 
an be made between end-point manipulatorslike MEMOS (Mi
era et al. 2005) and InMotion ARM (Hogan et al. 1992) onone side and exoskeleton systems, like Armeo Power (Nef et al. 2007) on theother side. Exoskeletons follow the natural arm anatomy and 
an deliver jointspe
i�
 assistan
e. However with exoskeletons, proper alignment between jointaxes and exoskeleton axes is 
ru
ial, requiring time and experien
ed operators.Passive alignment systems have been proposed to prevent misalignment (Stienenet al. 2009a; S
hiele and Hirzinger 2011), but will always in
rease the 
omplexity ofthe devi
e. Furthermore, the exoskeleton should provide large shoulder torques to
ompensate for gravitational for
es due to the arm and the exoskeleton itself. Endpoint manipulators in general have a more simple me
hani
al stru
ture. Typi
allythese devi
es have a single 
onne
tion with the human arm and therefore 
annotassist individual joints.Existing upper extremity devi
es 
an also be 
ategorized a

ording to theamount of assistan
e (e.g. number of degrees of freedom, a
tuator power, 
ontrol-lability) they are able to provide, see �gure 5.1. There exist very powerful high-end(mostly exoskeleton) devi
es on one side and passive devi
es on the other side. Ex-amples of powerful high end devi
es are Armeo Power (Nef et al. 2007), CADEN-7(Perry et al. 2007) and MIME (Lum et al. 2006). These devi
es share proper-ties like large work-range, strong motors and fast a
tuators. Often these devi
esare suitable for movement assistan
eand for diagnosis using system identi�
ationte
hniques (Kooij et al. 2005) These te
hniques need imposed perturbations ofthe arm, whi
h leads to in
reasing demands on the system. Some systems arepurposely built with this appli
ation in mind (Park et al. 2008; Stienen et al. 2011;Otten et al. 2014). Examples of passive devi
es are the Dampa
e (Stienen et al.2009a), Armeo Boom (Stienen et al. 2009b) and Armeo Spring (San
hez et al.79
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2006). These devi
es mainly 
ountera
t the gravitational for
e a
ting on the armand allow users to use their remaining mus
le 
apa
ity to move their arm withoutthe load of gravity. In addition, several 
able-based systems have been developedto move the arm (Rosati et al. 2005; Mao and Agrawal 2012).Another important di�eren
e between existing devi
es is the 
ontrol ar
hite
-ture. Some devi
es (like MIME) are position 
ontrolled. These devi
es are very sti�and move the arm in a 
ertain position, whi
h has been shown less bene�
ial fortherapy (Reinkensmeyer et al. 2009). Other devi
es are impedan
e 
ontrolled (In-motion ARM, ARMin) whi
h means that they apply a for
e to guide the arm basedon a measured deviation from a desired position or traje
tory. A third 
ategoryare admittan
e 
ontrolled devi
es (e.g. Hapti
 Master). In admittan
e 
ontrol,intera
tion for
es are measured and used to 
ontrol the speed of the a
tuatorssu
h that a 
ertain virtual (hapti
) environment is per
eived by the user.For rehabilitation purposes, 
urrently there exists a gap between the high-enda
tive devi
es and the passive devi
es. A low power assistive devi
e with a 3Dworkspa
e 
an �ll this gap. Thereby allowing for fun
tional task training, when thedevi
e is kept inherently safe and easy to operate by a non-expert, possibly evenat home.Compensation for gravitational for
es already has shown to be bene�
ial forrehabilitation after stroke (Beer et al. 2007; Krabben et al. 2012; Prange et al.2012). However for some patients gravity 
ompensation alone is not enough to
omplete 
ertain rea
hing tasks, espe
ially early after stroke. A little extra a
tiveguidan
e in the movement dire
tion additional to gravity support may help thesepeople in 
ompleting rea
hing tasks, whi
h makes therapy mu
h more rewarding.Assistan
e of rea
hing tasks does not ne
essarily require high a
tuation for
es. Asmall for
e guiding the patient in the right dire
tion would already be su�
ient.A devi
e 
apable of both 
ountera
ting gravitational for
e and supplying assistivefor
es in three dire
tions would in potential be a great therapeuti
 tool to improverea
hing movements after stroke.To �ll the gap, we developed a new lightweight a
tive therapeuti
 devi
e (ATD).This paper presents the design and evaluation of this novel three dimensional end-point manipulator for use in fun
tional training of rea
hing tasks after stroke. Keyfeatures of the system are the ability to provide both gravity support and applyrelatively small guiding for
es. In addition, the system is inherently safe, simpleto install and easy to operate by a non-expert. The design is relatively simplein order to keep the 
osts low and therefore has the potential to make the �nalstep to 
lini
al or even home use. This will be a big step forward along the way toaddress intensive after-stroke therapy and e�e
tive rehabilitation out
ome.5.2 Hardware Design5.2.1 Spe
i�
ationsThe ATD is a training system suited for training of either the left or the rightarm of a patient, see �gure 5.2. Table 5.1 lists the key spe
i�
ations of the ATD81
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Table 5.1: Overview of key spe
i�
ations of ATDParameter ValueStature range of intended patientpopulation 1.46-1.88 m*Maximum patient weight 120kg (∼ 3kg arm weight*)Fügl-Meyer/MRC** s
ore of intendedpatient population ≥30 / ≥ 2Donning time <2 minSize of housing 0.30 × 0.23 × 0.55 mSize of ground frame 0.90 × 1.15 mLength of links l1 and l2 0.6 mSystem weight 25.5 kgMax power 
onsumption 600 W
Fx = -16..15 NMaximum a
tuation for
e*** Fy = -13..17 N
Fz = -9..9 NBandwidth of for
e a
tuation (
losed loop) 2.3 HzBandwidth of position a
tuation (
losed loop) 2.1 HzHysteresis <2.2 N* Corresponds to P01 and P99 stature range of Dut
h 60+ male and female population(Daanen et al. 2003).** MRC = Medi
al Resear
h Coun
il S
ale of mus
le power;2 = movement only if gravity is eliminated*** Determined open loop; negative for
es indi
ate for
es in the dire
tion of the negative axissystem. The system is intended to be used by a patient whi
h is seated in front of atable. Due to its 
ompa
tness and low weight, the system 
an be transported by asingle person. The system is very �exible and allows fast adjustments of the exa
ttraining tasks, whi
h is bene�
ial for the motivation and the overall training e�e
t(Timmermans et al. 2010). Furthermore the amount of support or restri
tion 
anbe adjusted for ea
h training and person, from resistive 3D for
es to 
ompensationof gravitational for
es and assistive guidan
e for
es.The ATD uses a 
ombination of passive gravity 
ompensation and a
tive a
-tuation to redu
e required a
tuator power and thereby 
osts. The gravity 
om-pensation is provided by a 
lo
k spring, of whi
h the pre-tensioning is manuallyadjustable, to provide a nominal verti
al for
e. The end of the 
lo
k spring is 
on-ne
ted to a 
able, whi
h runs parallel to link l1, over a 
am and is 
onne
ted to link

l2 of the robot (�gure 5.2). The shape of the 
am 
ompensates for both rotationof angle β , leading to a redu
tion of e�e
tive length of l2, and for the non-linearityof the rotational spring. To optimize the 
am shape su
h that 
ompensation for
esare minimally in�uen
ed by position 
hanges, the for
e error was measured by ver-ti
al movement of a load using a 
ylindri
al 
am. For di�erent angles of α, the83
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Figure 5.3: Non-linearity of the passive gravity 
ompensation. Imperfe
tions for movement inx and y dire
tion are shown relative to the 
enter xyz-position [0.6,1.0,0.0℄. The a
tuators will
ompensate for the imperfe
tions in passive gravity 
ompensation.load 
ompensation error was measured by variation of β with a �xed load. Basedon these load 
urves a new 
am was 
al
ulated giving the least load variation whilevarying α and β . Resulting in the passive 
urve shown in �gure 5.3. The remainingdeviations 
an be a
tively 
ompensated for., while was �xed in the 
enter position.With reverse engineering a new 
am is 
al
ulated. Before a training session isstarted, the operator 
an adjust the spring 
ompensation to provide the desired
ompensation for a spe
i�
 patient. The use of a passive gravity 
ompensationkeeps the robot in position during donning and do�ng, ensuring an intrinsi
 safesituation.5.2.2 A
tuation and sensingTo meet the a
tuation demands of a high torque at a low speed with a standard and
ompa
t motor, transmission and gearing is needed. The limited ba
k drivabilityof gears results in unsafe and dire
t 
oupling to the a
tuator. This 
an be redu
edby introdu
ing elasti
ity in the drive 
hain, i.e. series elasti
 a
tuation (Pratt andWilliamson 1995). However, in the ATD this is solved by using a novel damperapproa
h. With a damper the generated torque is proportional with the motorspeed. The motor-damper 
ombination makes a fast and stable torque a
tuatorand allows for a very 
ompa
t, safe (de
oupling of subje
t and motor) and robustdesign with a relatively high 
losed loop bandwidth.The damper in the drive train allows for for
e 
ontrol by 
ontrolling the rota-tional speed, similar to the use of series elasti
 a
tuators (Pratt and Williamson84
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1995) where for
e is 
ontrolled by 
ontrolling spring de�e
tion. The use of a non-dissipating element like a spring, might however 
ause unstable os
illations (Oblakand Matja
i
 2011). As opposed to the SEA, the rotational damper dissipatesenergy. This makes appli
ation safer for usage in robots intera
ting with humansat the 
ost of a redu
ed e�
ien
y. Furthermore the damper 
on
ept has a higher
losed loop bandwidth 
ompared to position feedba
k when using a motor withgearbox or �exible elements. This higher bandwidth is 
aused by the fa
t that the
losed loop system with a damper is part of the velo
ity feedba
k loop, while thespring system is part of the position feedba
k loop. The former has per de�nitiona higher bandwidth.All a
tuators are en
losed in the housing, see �gure 5.2. The drive train of therobot has a
tive torque a
tuators for axes α and β in 
ombination with the passivegravity 
ompensation. The a
tuator for the γ axis is not in�uen
ed by gravitationalfor
es, as the axis is verti
al. Therefore, a more 
ompa
t drive train withoutdamper was 
hosen for axis γ. All axes are a
tuated by a DC motor 
ombined witha planetary gearhead with a redu
tion ratio of 51:1. For the base rotation axis γ,the DC motor drives a tooth belt 
onne
ted to the robot housing. A me
hani
albreak-out me
hanism ensures that the maximum torque in the γ dire
tion is limitedto a safe value of 11 Nm. For the other two axes, the DC motor is pla
ed in serieswith a rotational damper (Kinetrol S-CRD, Kinetrol, Farnham, UK). The use of arotational damper ensures that the torque is limited due to the maximum speedof the motor and ensuring an intrinsi
ally safe situation. A disadvantage of usinga damper is the need for 
ontinuous motor rotation to provide a 
onstant for
e.However, in the ATD system, the majority of the 
onstant for
e is already providedpassively by the parallel spring. Thus the motor damper 
ombination only needsto provide small o�set for
es.The 
ombination of passive and a
tive a
tuation ensures that the requiredmotor power is relatively low as the majority of the gravity 
ompensation is providedby the 
lo
k spring. This ensures that the system has a low power 
onsumptionand 
an be 
onne
ted to a standard mains 
onne
tion. Furthermore, the system isinherently safe sin
e 
ontrol errors or 
ontroller instability 
an never lead to largefor
e �u
tuations or a risk of hyper-�exion of patient joints. Also the ATD doesnot depend on an available mains supply to hold its verti
al position, preventingthe 
ollapse of the roboti
 manipulator with the patient atta
hed in the 
ase ofunexpe
ted power loss.A six Degree-Of-Freedom (DOF) for
e sensor (JR3 20E12 100N, JR3, Wood-land, CA, USA) and three absolute angular en
oders, together with a kinemati
model of the a
tuator allows the measurement of the intera
tion for
e ve
tor be-tween the ATD and the subje
t and also the position ve
tor of the end pointposition. A passive gimbal is lo
ated between the endpoint of l2 and the arm 
u�.The gimbal is equipped with potentiometers to measure the angles and allow forestimation of the hand and elbow orientation. 85
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5.2.3 Ele
troni
 designThe ATD is 
ontrolled by means of an embedded 
omputer. In this 
omputeran embedded safety software layer is implemented to 
he
k whether values arewithin a

eptable bounds and ensure that possible errors in 
ontrol do not leadto una

eptably large a
tuation for
es. On top of this embedded software layer,
ustom 
ontrollers 
an be implemented in Matlab/Simulink (The Mathworks, Nat-i
k, USA) and uploaded to the embedded 
omputer system for real time 
ontrol.In this Matlab/Simulink layer desired variables 
an be sele
ted for logging, for in-stan
e the number of movements, the interval between movements, the quality ofa movement (deviation from an ideal path) and the amount of support during amovement. This allows for feedba
k to patient and physi
ian during and after atraining session. Patient feedba
k is an important motivator during training (Tim-mermans et al. 2010), while the feedba
k for the physi
ian allows evaluation of thetraining performan
e and on the longer term evaluation of the training e�e
t.5.3 Controller designThe 
ontrol s
heme is shown in �gure 5.4. Two feedba
k loops are implemented.The inner for
e 
ontrol loop is initially used to 
ompensate for small imperfe
tionsin the passive gravity 
ompensation (see also �gure 5.3). The o�set for
e term(Fo f f set) 
an be used to 
ompensate pre-measured gravitational for
es. In the outerfeedba
k loop, the deviation from a set point traje
tory (xre f ) is used to implementan impedan
e 
ontroller with a virtual spring-damper system (bs+ k), leading to aset point for
e (Fre f ).Based on the 
al
ulated referen
e for
e (Fre f ) and the measured for
es (F) thefor
e errors are 
al
ulated and subsequently transformed into joint torque errors(τ[α ,β ,γ],err) with the transpose of the Ja
obian matrix. As the a
tuation for thebase (γ) is di�erent from the other axes (α, β ), this angle is 
ontrolled di�erently.For axes α and β the joint torque errors are used to 
al
ulate the desired motorspeed (θ̇([α ,β ],re f )), whi
h is proportional to a joint torque as the motors are 
oupledthrough a rotational damper, as explained in Se
tion 5.2.2. PI 
ontrollers are usedto 
ontrol the speed of the motors. For γ, an inner for
e 
ontrol loop is 
reatedwith PI 
ontrol of the motor speed (θ̇(γ,re f )) based on the determined torque error.5.3.1 Controller tuningThe torque 
ontrollers for the three axes were individually tuned. For this purpose,the endpoint of the robot with the for
e sensor was �xed to the world in the middleof the work range and the frequen
y response fun
tions (FRF) for the devi
e wereestimated (Hdevice). To estimate Hdevice, a multisine perturbation was applied toone motor dire
tly (θ̇([α ,β ,γ],re f )), while the 
ontrollers were dis
onne
ted and thereferen
e for the other motors was zero. 87
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k 
ir
les denote the M = 1.3 M-
ir
le. The bla
k
ross denotes the [-1,0℄ point in the Nyquist diagram.Control parameters were set based on the open loop frequen
y response fun
tion(FRF) of ea
h axis. The loop gain for ea
h axis is determined by:
Hloop =

(

Kp +
Ki

s

)

Hdevice (5.1)in whi
h Kp and Ki are the proportional and integral gains of the 
ontrollerrespe
tively and Hdevice is the transfer fun
tion of the devi
e for that spe
i�
 axis.The values for the 
ontrol parameters were set using Nyquist diagrams andM-
ir
les, see �gure 5.5 (Ma
iejowski 1989; S
houten et al. 2006). Brie�y, theM-
ir
le denotes a stability margin, where a spe
i�
 value for M indi
ates a 
on-stant 
losed-loop gain. When the dynami
al open loop response of the systemis obtained, theoreti
al values for the 
ontroller 
an be 
al
ulated iteratively su
hthat the 
losed loop system remains stable. These 
ontrol values are then appliedto ensure the 
losed loop response of the true system indeed lies outside the se-le
ted M-
ir
le. In our 
ase we sele
ted M=1.3, whi
h indi
ates that the highestgain of the 
losed loop behaviour is 1.3. Bandwidths of the individual axes weredetermined at 3.7Hz, 6.4Hz and 2.4Hz for axes α, β and γ respe
tively.5.4 Performan
e5.4.1 For
e 
ontrollerTo evaluate the bandwidth of the for
e 
ontroller, a multisine signal was appliedas an o�set for
e (Fo f f set) while the devi
e was �xed to the world. The bandwidthof the system is determined as the −3 dB point in the frequen
y response fun
tion
F

Fre f obtained from this measurement. The obtained frequen
y response fun
tionsare shown in �gure 5.6. The bandwidth was estimated to be 7.0 Hz, 6.1 Hz and
2.3 Hz for Fx, Fy and Fz respe
tively.To evaluate the response speed of the ATD, the responses to step for
e inputswere measured. From these step responses the settling times were 
al
ulated for88
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e
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rosses the -3dB line (dottedline). The top pane shows the gain of the frequen
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h dire
tion. In �gure 5.7, the responses to step inputs of 1 N, 5 N, 10 N and
15 N are shown. Average settling times were determined at 0.24 s, 0.18 s and
0.40 s for Fx, Fy and Fz respe
tively.To evaluate the for
e tra
king a

ura
y and whether the for
e dire
tions areproperly de
oupled, sinusoidal referen
e for
e traje
tories were applied. RMS errorsbetween the referen
e and a
tual traje
tories were determined as a measure ofperforman
e. Figure 5.8, shows referen
e and measured for
es for all three axisduring the sine tra
king experiment. RMS errors were estimated at 0.74 N, 0.35 Nand 1.47 N for Fx, Fy and Fz respe
tively.5.4.2 Position 
ontrollerTo evaluate the bandwidth of the position 
ontroller, a multisine signal was appliedas a position perturbation while the referen
e was set at a �xed (neutral) position.The bandwidth was estimated to be 2.1 Hz, 3.9 Hz and 2.1 Hz for x, y and zrespe
tively.End point sti�ness of the devi
e was evaluated by using a �xed referen
e posi-tion. The devi
e was moved manually away from its referen
e position while for
esand positions are re
orded. The measured sti�ness was 
ompared to the value ofthe virtual sti�ness, k, whi
h was set in the 
ontroller. During the measurementthe robot's end point was manually moved.Figure 5.9 shows the measured and theoreti
al sti�ness values for x, y and zdire
tions during trials with di�erent settings for the position 
ontroller. The slopeof measured and theoreti
al lines are similar. Note that the ATD 
an apply alimited amount of for
e (also to ensure safety), whi
h 
auses the saturation e�e
tsin the graphs.Another important observation from �gure 5.9 is that the system has little for
e89
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hysteresis. Any hysteresis present indu
es non-linear behavior of the system andredu
es performan
e. In pra
ti
e this will 
ause non-
ontinuous for
e assistan
eto a patient when the movement dire
tion of an axis inverts during motion. Ifthe assistive for
e �u
tuates, this may be mistaken for a patient indu
ed deviationfrom the ideal referen
e traje
tory and will 
loud the measurement results.The hysteresis present in the system was 
al
ulated from the measurementsshown in �gure 5.9. The average hysteresis for the di�erent sti�ness settings wasestimated at 0.6 N, 1.4 N and 1.6 N for x, y and z respe
tively.To evaluate the performan
e of the position 
ontroller, a mass 
omparableto the weight of a nominal arm (2.3 Kg) was atta
hed to the endpoint of therobot. Passive gravity support was adjusted to 
ompensate for the added weight.Cir
ular referen
e traje
tories were applied to move the weight along a 
ir
le in thehorizontal plane (k = 150N/m, b = 35Ns/m). The results are shown in �gure 5.10.RMS errors between the referen
e and a
tual traje
tories were estimated at 13.1mm, 2.1 mm and 4.0 mm for x, y and z dire
tion respe
tively for the 
ir
ularmovement duration of 10 se
onds (0.6 rad/s) and at 5.8 mm, 0.86 mm and 3.1mm for x, y and z dire
tion respe
tively for the 
ir
ular movement duration of 20se
onds (0.3 rad/s).5.4.3 Evaluation in possible appli
ationTo evaluate the ability of the devi
e to assist patients, a single 
ase study wasperformed with a male stroke subje
t (62 years old) with minimal voluntary armfun
tion (A
tion Resear
h Arm Test s
ore of 3 points). The stroke subje
t was
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ombination,the averaged resulting movement of �ve repetitions is shown. Referen
e positions are shown inbla
k. The 
olored lines show the measured positions for the di�erent 
ombinations. All startingpositions were set at [0,0℄ for 
omparison.92
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 Figure 5.11: Result of 
ir
le drawing tasks of the single stroke subje
t. Results are shown for thefollowing 
onditions: 1) without support of the devi
e (blue); 2) with gravity support provided bythe devi
e (green with dots); 3) with a virtual table pushing the arm upward (red with triangles);and 4) Passive movement pulling the arm towards a 
ir
ular traje
tory with k = 100N/m and
b = 22Ns/m (bla
k with 
rosses). The gray 
ir
les indi
ate shoulder, elbow and hand positions.The bars between the 
ir
les represent upper and lower arm of the subje
t.asked to make a 
ir
ular movement with his hand in the horizontal plane using visualfeedba
k under ea
h of the following 
onditions: 1) without support of the devi
e,2) with gravity support provided by the devi
e, 3) with a virtual table pushing thearm upward when moved below a 
ertain position threshold and 4) passively, withthe devi
e moving along a 
ir
ular referen
e traje
tory (k = 100N/m, b= 22Ns/m).For 
onditions 2, 3 and 4, the weight of the arm was measured beforehand andused as o�set for
e in y-dire
tion.Figure 5.11 shows the results for all four 
onditions. Support of arm weighthas a 
lear bene�
ial e�e
t as the patient is then able to maintain the arm aroundshoulder level (
ompare the blue line (voluntary movement) in �gure 5.11 withthe other lines). Gravity support only (green line with dots) and 
ombined witha virtual table (red line with triangles) gave similar results. The movement rangewas extended when the robot provides additional movement assistan
e during thepassive 
ondition (bla
k line with 
rosses). 93
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5.5 Dis
ussionIn this paper we presented and evaluated a novel three dimensional end-pointmanipulator for use in fun
tional training of rea
hing tasks after stroke. Thesystem is aimed at assisting patients during fun
tional upper extremity exer
ises.The system is lightweight (25 kg) and easy to operate by a non-expert, whi
h leadsto the potential of making the �nal step to 
lini
al or even home use.During the passive movement 
ondition the referen
e traje
tory was a large
ir
le in the horizontal plane. However, the patient's arm did not follow thistraje
tory and the a
tual 
ir
ular path was mu
h smaller than the referen
e path.This resulted from a 
ombination of imperfe
t gravity 
ompensation and limitedmotor power. This led to a saturation of the motor, as this motor was already usedpartially for 
ompensation of gravitational for
es. As mentioned before this 
anbe over
ome by implementing a passive spring with a higher sti�ness for providingpassive gravity 
ompensation around the α axis, whi
h would then also improvethe provided assistan
e.5.5.1 Comparable systemsOur obje
tive was to develop a devi
e whi
h �lls the gap between passive devi
esand high-end devi
es. Therefore there are no dire
tly 
omparable systems. How-ever, we 
an 
ompare the system presented here to the other (high-end) a
tivedevi
es as shown in �gure 5.1, sin
e in theory these devi
es 
ould provide the sameassistan
e as the ATD system. The ATD system has mu
h lower assistive for
e
apability (∼ 15 N) 
ompared to the Armeo Power (∼ 75 N) and the Hapti
 Mas-ter (∼ 100 N). Also the bandwidth of the ATD's position 
ontroller (1.4 Hz) islower than the bandwidth of the Armeo Power (2.1 Hz) and the Hapti
 Master(> 10 Hz).Currently, sti�ness values of up to 250 N/m 
an a

urately be rendered withimpedan
e 
ontrol, whi
h is low 
ompared to the Armeo Power (> 714 N/m) andthe Hapti
 Master (up to 50 kN/m). However, for guidan
e of movement 250N/mwill be su�
ient. Further redu
ing the sti�ness of the position 
ontroller 
an beused to allow the user to deviate more easily from the referen
e traje
tory, whi
his helpful for rehabilitation purposes.Although, the ATD system has lower for
e 
apability, lower endpoint sti�nessand lower bandwidth 
ompared to Armeo Power and Hapti
 Master, this will notbe a limitation when the system is applied for low frequent fun
tional tasks (e.g.rea
hing movements). Moreover, the ATD system is more 
ompa
t and has mu
hlower weight (∼ 25 kg) than both the Armeo Power (> 200 kg) and the Hapti
Master (∼ 40kg). This gives the 
urrent system the bene�t of being more easy tohandle, move and transport. Together with the low for
e 
apability and inherentsafety due to the dampers in the drive train, this makes the ATD perfe
tly suitedfor fun
tional training in a home environment.94
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5.5.2 Clini
al impli
ationsThe devi
e has two main rehabilitation appli
ations. These 
an be deployed de-pending on the ability of individual patients, possibly in a home environment en-abling frequent training. The �rst appli
ation is 
ompensation of gravitationalfor
es. Gravity 
ompensation had been shown bene�
ial for rehabilitation of strokepatients (Beer et al. 2007; Krabben et al. 2012; Prange et al. 2012). Literaturereports in
reased work range due to redu
ed �exion 
ouplings when 
ompensat-ing for gravitational for
es. When patients improve, gravity 
ompensation 
an beredu
ed to keep the training 
hallenging.A se
ond appli
ation is the a
tive assistan
e of motion. When patients havedi�
ulties in rea
hing the arm towards an obje
t, the devi
e 
an assist them inrea
hing the obje
t with the traje
tory guidan
e mode. When patients improve, theassistan
e 
an be redu
ed again. For rehabilitation purposes the virtual sti�nessand damping parameters 
an be used as tuning parameters to make the roboteither sti� or 
ompliant, depending on the amount of assistan
e the subje
ts needsduring the movement. With su
h an approa
h, therapy 
an be both motivating(patients 
an rea
h the targets) and 
hallenging (patients should provide su�
iente�ort to get to the target).To assist rea
hing towards obje
ts in a training environment a minimum jerkreferen
e traje
tory (Shadmehr and Wise 2005) towards a prede�ned obje
t posi-tion is 
urrently implemented. In addition, 
ir
ular referen
e traje
tories are imple-mented, allowing for assistan
e during 
ir
le drawing tasks (Krabben et al. 2011;Sukal et al. 2007). However, the interfa
e also allows for de�ning 
ustom referen
etraje
tories.The bene�t of both the gravity support and a
tive assistan
e have been shownin a single 
ase study with a stroke subje
t with minimal arm fun
tion (ARAtest s
ore of 3 points). In �gure 5.11, di�eren
es in movement 
an be observedbetween the patient's moving voluntarily without any assistan
e and moving withsupport of his arm weight by the ATD. With support of arm weight the patientis 
apable of lifting the arm at shoulder level. Sin
e the patient had minimal armfun
tion, the size of the movement with 
ompensation was still very minimal. Whena
tive assistan
e was added, the movement size be
ame mu
h larger, indi
atingthe training potential of the devi
e.However, there was no noti
eable di�eren
e between 
ompensation of gravityonly and the 
ondition with a virtual table surfa
e. This is likely the result of theminimal voluntary fun
tion of the patient. We expe
t that patient's with morevoluntary arm fun
tion 
an bene�t from the virtual table, by using this feature toget more elbow extension due to the synergies often o

urring after stroke (Beeret al. 2007). Additional 
lini
al tests are required to verify this.5.5.3 LimitationsThe 
urrent design is a �rst iteration in developing a 
ompa
t low-power assistiveend-point manipulator. The performan
e was already shown su�
ient for assist-ing fun
tional rea
hing movements. However, there are some small points whi
h95
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ould easily improve the performan
e even further. Currently, the γ axis has theworst performan
e and is therefore the bottlene
k. The lower performan
e mainlyresulted from 
onservative rules to limit the motor speed and torque output on thisaxis to prevent enabling of the me
hani
al break out system. This also resulted ina slower response and a lower for
e bandwidth in the z-dire
tion (2.3Hz) 
omparedto the x- and y-dire
tion (7.0 Hz and 6.1 Hz respe
tively). This bandwidth willbe su�
ient for low frequent, relatively slow movements (e.g. rea
hing tasks),however with some minor modi�
ations to the design (stronger motor or also usea damper driven solution for γ axis) the potential of the devi
e 
ould be in
reasedeven further.In addition the imperfe
tions in gravity 
ompensation in relation to movementalong the x-axis are higher than expe
ted. This results in higher requirements forthe motor (α) to eliminate these perfe
tions. This limits the for
e range in 
ertainpositions and 
ould be over
ome by the use of a spring with higher sti�ness for thepassive gravity 
ompensation around the α-axis, whi
h will be implemented in afollow up design.5.6 Con
lusionThe novel system presented here we are able to �ll the gap between high powerassistive devi
es and the passive devi
es. With its 
apability of providing both
ompensation of gravitational for
es and assistan
e during fun
tional tasks, theATD system is a great assistive tool during the rehabilitation pro
ess. Due to theinherent safety, low weight and 
ompa
tness of the system, intensive fun
tionaltask training be
omes available, potentially even in a home environment.
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Abstra
tRehabilitation of both arm and hand fun
tion is an important aspe
t for in
reasing fun
tionalindependen
e of stroke subje
ts. Roboti
s and fun
tional ele
tri
al stimulation (FES) 
ansupport rea
h and grasp and aid rehabilitation. The aim of this study is to demonstratethe te
hni
al feasibility of an integrated devi
e 
ombining roboti
s and FES for fun
tionalmanipulation of obje
ts.To support grasp and release, FES was applied using Model Predi
tive Control (MPC) to
ontrol joint angles of thumb and �ngers. In addition, rea
h support was provided by anovel 3D roboti
 manipulator. The system's performan
e was evaluated in both stroke andblindfolded healthy subje
ts, where the subje
t's passive arm and hand made fun
tionalrea
h, grasp, move and release movements while intera
ting while manipulating obje
ts ofdi�erent sizes.The su

ess rate of 
omplete fun
tional grasp, move and release movements with di�erentobje
ts ranged from 33% to 87% in healthy subje
ts. In severe 
hroni
 stroke subje
ts onlypartial trials were 
ompleted su

essfully. In healthy subje
ts, overall su

ess rates for thesubtasks rea
h, hand opening, grasping, holding, positioning and releasing the obje
t were89%, 96%, 96%, 98%, 76% and 100% respe
tively.We demonstrated that our developed integrated training system 
an move the passive armand hand for fun
tional pi
k and pla
e movements. In the 
urrent setup, the positioninga

ura
y of the robot with respe
t to the obje
t position was 
riti
al for the overall per-forman
e and 
ould be improved by the use of a higher virtual sti�ness and by in
ludingfeedba
k of obje
t position in the robot 
ontrol. The system has potential for post-stroke re-habilitation, where support 
ould be redu
ed based on patient performan
e whi
h is neededto aid motor relearning of rea
h, grasp and release.100
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6.1 Introdu
tionStroke survivors often have a diminished arm and hand fun
tion, whi
h redu
estheir ability to intera
t with obje
ts. In many a
tivities of daily living, like drinkingor opening a door, human-obje
t intera
tion is essential. Therefore rehabilitationof both arm and hand fun
tion is an important aspe
t for in
reasing fun
tionalindependen
e of stroke subje
ts. Being able to grasp and release without the abilityto rea
h, or being able to rea
h without the ability to grasp and release, does notlead to a fun
tional movement. From a fun
tional point of view, 
ombining rea
hsupport with grasp and release training in a single rehabilitation solution would bedesirable.In the past de
ades roboti
 te
hnology has emerged to aid the rehabilitationpro
ess of stroke subje
ts. Robots are parti
ularly useful for support of repetitivetasks with high repeatability and without the need for 
ontinuous presen
e of atherapist. Many roboti
 systems 
apable of supporting or training the arm duringrea
h have been developed and evaluated (Loureiro et al. 2011). Some roboti
 sys-tems targeted at hand support have been developed (Worsnopp et al. 2007; Dovatet al. 2008). However, high 
omplexity is needed to properly a
tuate the handwith external me
hani
s. Therefore hand roboti
s is 
urrently not very appli
ablefor fun
tional movement training, i.e. integrated with arm movement, espe
iallynot in a home environment whi
h 
ould be the future of automated rehabilitationsystems allow intensive training.Besides therapeuti
 roboti
s also fun
tional ele
tri
al stimulation (FES) is be-ing used to restore hand fun
tion in stroke survivors. FES of �nger and thumbmus
les 
an be bene�
ial for stroke subje
ts in relearning fun
tional grasp andrelease movements (Mi
era et al. 2010). FES has been used su

essful for bothneuroprostheti
 (She�er and Chae 2007; Snoek et al. 2000) and therapeuti
 sys-tems (Powell et al. 1999; Rosewilliam et al. 2012; de Kroon et al. 2002; Barsi etal. 2008; Malhotra et al. 2012). However, 
urrent 
ommer
ially available systemsuse an open loop approa
h, whi
h limits performan
e and requires 
ontinuous userinput (Lyn
h and Popovi
 2008). Also FES 
ontrol needs a personalized approa
hdue to the high variability between subje
ts (
hapter 2).To in
rease training independen
e, an approa
h for training without the need fora therapist being 
ontinuously present is preferred. Re
ently, we have developed aModel Predi
tive Control (MPC) approa
h to sele
tively 
ontrol �ngers and thumbfor grasp and release with FES (
hapter 4). The strength of this approa
h is the useof a personalized model relating the stimulation level to the resulting movement. Inaddition, this method has potential for appli
ation in an automated system allowingfor therapist-independent training.The overall goal of our resear
h is to develop an integrated post-stroke trainingenvironment for home use by a 
ombination of roboti
 arm support and FES supportof grasp and release. For relearning after stroke a high level of patient involvementis required (Reinkensmeyer et al. 2009), therefore a training system should fo
uson redu
ing support based on the ability of the individual patient (Freeman etal. 2009; Wolbre
ht et al. 2008). However, as a �rst step, we will fo
us on full101
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Table 6.1: Properties of parti
ipating subje
tsS1 S2 H1 H2Age 62 67 25 28Sex M M M MHand R R R RARAT 3 11 n/a n/aMonths +stroke 160 112 n/a n/asupport of movement (in whi
h the subje
t is passive) in healthy subje
ts and
hroni
 stroke subje
ts. The aim of this paper is to demonstrate the feasibility ofa 
ombined roboti
s-FES rehabilitation system for full support of fun
tional obje
tmanipulation tasks. Full support will be the most 
hallenging from a te
hni
alpoint of view and is therefore evaluated here.6.2 Materials and Methods6.2.1 Subje
tsTwo stroke subje
ts (S1-S2) and two healthy subje
ts (H1-H2) parti
ipated in thisstudy. The a�e
ted side for the stroke subje
ts and the dominant side for thehealthy subje
ts was supported. Subje
t 
hara
teristi
s are shown in table 6.1.The study was approved by the lo
al ethi
s 
ommittee and all subje
ts signedwritten informed 
onsent.6.2.2 Experimental setupRoboti
 devi
e for rea
h supportA 
ustom-built roboti
 devi
e was re
ently developed (Dem
on, Ens
hede, TheNetherlands) (Chapter 5). This devi
e (see �gure 5.2) is a 3D end e�e
tor whi
h
an both 
ompensate gravitational for
es of the arm and manipulate the arm inspa
e. The devi
e has two key features. Firstly, it 
ompensates gravitationalfor
es passively and se
ondly, it provides a
tive guidan
e with damper based drivetrains, whi
h makes the devi
e inherently safe by the use of low power motors andde
oupling of the motors and the load. In addition to these key features, the devi
eis 
ompa
t, has low weight and allows for fast donning and do�ng.The devi
e 
an apply for
es to the subje
t's arm using three a
tive and threepassive degrees of freedom. A spring is mounted parallel to the a
tuator of the
β axis (see �gure 5.2). The pretension of this spring 
an be adjusted in orderto passively 
ompensate for the weight of the subje
t's arm. All a
tuators aremounted in the base. Rotation of the base and rotation of links l1 and l2 (see�gure 5.2) are a
tuated. At the end point a passive gimbal is mounted betweenthe linkage and the arm 
u�, whi
h allows for arm rotations relative to the linkage.A six degrees of freedom for
e sensor mounted at the end of the linkage measuresthe intera
tion for
es between the arm and the linkage. With the en
oders on the102
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a
tive axes and potentiometers on the passive gimbal the arm and hand positionsare 
al
ulated.The robot's embedded 
omputer (Ba
hmann ele
troni
 GmbH, Feldkir
h, Aus-tria) re
eived referen
e for
e setpoints from an xPC target 
omputer (The Math-works, Nati
k, USA) through analog 
ommuni
ation 
hannels.MPC and FES to support grasp and releaseWe re
ently developed a model predi
tive 
ontroller (MPC) for ele
tri
al stimula-tion of �nger mus
les to fa
ilitate grasp and release, des
ribed in details in (
hapter4). The same method was applied in the 
urrent study for 
ontrol of hand openingand 
losing and is brie�y des
ribed below.An overview of the FES 
ontroller is shown in �gure 6.3. The obtained systemmodel was used by the MPC (Cama
ho and Bordons Alba 2004) to 
al
ulate theoptimal stimulation amplitudes in order to rea
h the referen
e �nger angles.Two 
ustom-built ele
tri
al stimulators (TIC Medizin, Dorsten, Germany) ea
hhaving three independent stimulation 
hannels were used to stimulate �nger andthumb mus
les. Three stimulator 
hannels were used for targeting thumb mus-
les (abdu
tor polli
is longus, opponens Polli
is and Flexor polli
is brevis), theother three 
hannels were used through a multiplexer for targeting both the �exordigitorum super�
ialis mus
le with three ele
trodes and the extensor digitorum
ommunis ele
trodes mus
le with three ele
trodes. During grasp tasks the �exorele
trodes were a
tivated and during release tasks the extensor ele
trodes werea
tivated. Thus, in total nine stimulating ele
trodes were pla
ed. The �exor andextensor mus
les were pla
ed at positions evoking sele
tive movement of individual�ngers to allow for more sele
tive �nger 
ontrol. As the ring and little �nger wereless sele
tive and often respond simultaneously, they were targeted with a singleele
trode. See �gure 6.1 for an example of the ele
trode pla
ement.A VisualEyez (Phoenix Te
hnologies, Burnaby, Canada) motion 
apture systemwas used to tra
k positions of a
tive LED markers on hand and �ngers. Markerpla
ement is shown s
hemati
ally in �gure 6.2. Three markers were based onthe ba
k of the hand to represent the hand 
oordinate frame. In addition, twomarkers were pla
ed on the proximal phalanges of ea
h �nger. From these markersmeta
arpophalangeal (MCP) joint angles were 
al
ulated. For the thumb anglesin the plane of the 
oordinate frame (�exion/extension) and perpendi
ular to the
oordinate frame (abdu
tion/addu
tion) were 
al
ulated.The measured marker motions were sent to the xPC target 
omputer. The MPCsystem was implemented on this 
omputer using the marker motions to 
al
ulate�nger angles and 
ontrol the �ngers towards referen
e angles. Together with thegeneration of set point for
es for the roboti
 manipulator, the xPC target 
omputerthereby provided syn
hronous 
ontrol of rea
h, grasp and release.6.2.3 Experimental proto
olInitially, the ele
trodes were pla
ed on the target mus
les, based on visual inspe
-tion of the evoked responses. In addition, maximum stimulation amplitudes were103
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(a)
(b)Figure 6.1: Overview of ele
trode pla
ement on the dorsal (a) and palmar side (b) of the armand hand. Ele
trodes are pla
ed above the �nger extensors (1..3), �nger �exors (4..6), abdu
torpolli
is longus (7), opponens polli
is (8) and the �exor polli
is brevis (9). Two ground ele
trodes(G) were used for ea
h of the two stimulator devi
es.

X

Y

Z

Figure 6.2: S
hemati
 representation of pla
ement of motion tra
king markers on the ba
k of thesubje
t's hand (
hapter 4).104
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Figure 6.3: FES 
ontrol system. A MPC approa
h is used to 
ontrol the �nger movement, whi
his measured by an opti
al motion 
apture systemdetermined for all ele
trodes. The maximum was determined by o

urren
e of oneof the following three events: subje
t dis
omfort, 
rosstalk to other mus
les orsaturation of response, whi
h was in general the �rst event to o

ur. When allele
trode positions were determined, the arm was �xed in the 
u� of the roboti
manipulator and the passive weight 
ompensation was adjusted for the subje
t'sarm weight.Subsequently, an initialization pro
edure was started to obtain a subje
t spe
i�
model relating the input stimulation amplitude to the resulting �nger movement.During this pro
edure ea
h ele
trode was a
tivated with random stimulation am-plitudes up to the determined maximum while the subje
t was relaxed. The robotwas in a �xed position slightly above the table in front of the subje
t. This positionwas later used as a starting position for the fun
tional movements.The A
tion Resear
h Arm Test (ARAT) was used as a test bed for passivegrasp and release movements. Four obje
ts of the ARAT (the wooden ball (�7.5
m) and three 
ubes: 2.5 
m, 5 
m and 7.5 
m) were sele
ted to evaluate thesystem with obje
ts of di�erent weight, size and shape. The respe
tive weightsof the obje
ts were 0.14 kg, 0.01 kg, 0.09 kg and 0.3 kg, for the ball and the
ubes ordered by in
reasing size. Coordinates representing three positions werepre-programmed into the robot: A) a starting position, B) an obje
t position onthe table in front of the subje
t were the ARAT obje
ts were initially pla
ed, andC) an obje
t target position were the obje
ts had to be moved to.A minimum jerk traje
tory generator was implemented to 
reate referen
e tra-je
tories to move between two de�ned positions with a prede�ned duration. A �xedvirtual sti�ness of 100 N/m was implemented to let the for
e 
ontrolled robot guidethe arm towards the referen
e traje
tory based on the measured position.Task spe
i�
ationDuring the tasks the subje
ts were asked to relax. The healthy subje
ts were blind-folded to prevent them from knowing whi
h obje
t they had to grasp and where.Thereby voluntary movement interferen
e was prevented. Tasks were repeated�ve times for ea
h obje
t for both fast movement (5.5 se
onds in total) and slowmovement (24 se
onds in total). The movement was divided in six subtasks:1. move from the start position to the obje
t 105



Chapter 6

6

2. open the hand for grasp3. 
lose the hand while holding the robot in position4. move and hold the obje
t5. position the hand for release, and6. release the obje
t.First the robot was set to keep the arm in the starting position. Next, the robot andMPC were set to follow referen
e traje
tories a

ording to the des
ribed subtasks.Subtasks 1 and 2 overlapped in time to in
rease smoothness of movement. Afterobje
t release the hand was moved ba
k to the starting position to be ready forthe next trial. When the obje
t was grasped su

essfully and released at thetarget position, the trial was marked su

essful. Otherwise, the subtask on whi
hthe movement failed was logged. When the robot had returned to the startingposition, the operator pla
ed the next obje
t at the obje
t position and removedthe previous one.6.2.4 Re
ordings and data analysisThe primary out
ome measure was the su

ess of the fun
tional obje
t manipula-tion task. Su

ess rates for the di�erent obje
ts were logged for all subje
ts. Inaddition the su

ess rates for the subtasks were logged. Trials were aborted whena subtask failed, therefore the number of evaluated trials per subtask depends onthe su

ess of all pre
eding subtasks.Intera
tion kineti
s was a se
ondary out
ome measure. Kineti
 data obtainedfrom the robot's for
e sensor was used to estimate voluntary interferen
e by thesubje
t. In addition, kinemati
 patterns of hand position were obtained from therobot's sensors and �nger joint angles were obtained from the motion 
apturedata. The performan
e in tra
king the hand and �nger referen
e traje
tories wasevaluated.As the robot operates in 
losed loop and the intera
tion for
e depends onboth the subje
t and the robot, we 
annot dire
tly separate the amount of for
eprovided by the robot and the user. Therefore, we assessed the energy balan
eof the intera
tion between the subje
t and the robot by integrating the produ
tof for
e and velo
ity over time, thus estimating work done between both systems.As the start and the end positions of the movement are the same and at rest, thetotal kineti
 and potential energy 
hanges are zero, thus the work done should bezero if the 
ombination of robot and subje
t behaved as a 
onservative system.The MPC was evaluated by the su

ess in grasp and release of the sele
tedARAT obje
ts: wooden ball (�7.5
m), small 
ube (2.5
m), middle sized 
ube (5
m) and large 
ube (7.5 
m).106



Passive rea
h and grasp with FES and roboti
 arm support

6

a b

cFigure 6.4: Example of the 
ontrolled movement in a healthy subje
t: a) rea
h to grasp, b) graspand move and 
) obje
ts release.6.3 ResultsExamples of the di�erent hand states (hand open, pin
h grip and 
ylindri
al grip)
ontrolled with MPC are shown in �gure 6.4. In addition the supplementary video1shows the system in a
tion while su

essfully moving the arm of a passive subje
tand manipulating di�erent obje
ts.6.3.1 Su

ess ratesIn table 6.2 the su

ess rates of the full rea
h, grasp, move and release move-ment sequen
es with the di�erent obje
ts are shown. In the healthy subje
ts themajority of trails was �nished su

essfully. In S1 the ele
tri
al stimulation was1Video available at http://youtu.be/8w-AhHzpXs8 107
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Table 6.2: Su

ess rates of 
omplete obje
t manipulation tasksObje
t S1 S2 H1 H22.5 
m 
ube - 0% 75% 67%5.0 
m 
ube 0% 0% 57% 87%7.5 
m 
ube - - 33% 40%Wooden ball - 0% 75% 45%su

essful outside the robot, however when the arm was pla
ed in the arm 
u�of the robot, the �nger �exors did not respond to the stimulation anymore, likelydue to skin/ele
trode movement with respe
t to the mus
le. Therefore when thisobservation was made the other obje
ts were not evaluated to save time as thiswould not provide new information. In S2 the stimulation of grasp and release wasrelatively su

essful, however the middle �nger had high tonus and did not extendsu�
iently whi
h 
aused pushing away of the larger obje
ts. Therefore evaluationof the largest 
ube was omitted. For the small 
ube, rea
h was mainly su

essfulbut the grip was not �rm enough to prevent slippage of the obje
t.As shown by table 6.2, the rea
h, grasp and release movements provided bythe system were not always su

essful. To investigate the failures in more detail,�gure 6.5 shows the su

esses and failures of all trials in healthy subje
ts and strokesubje
ts distributed over the di�erent subtasks. In healthy and stroke subje
tspositioning of the robot had high failure rates. In the stroke subje
ts, hand openingwas only su

essful in a few trials and none of the obje
ts was su

essfully grasped.For the stroke subje
ts, no data was available for moving the obje
t, positioningthe hand for release and releasing the obje
t, sin
e all trials had failed before obje
tmovement 
ould o

ur.6.3.2 Tra
king performan
eFigure 6.6 shows time series of arm/hand movement and �nger movement dur-ing multiple trials in subje
t H1 and S2. The performan
e of tra
king the refer-en
e positions was evaluated separately for arm movement and �nger movement.The arm position tra
king RMS errors averaged over all trials was 69.6± 17.5and 145.1±27.8 for healthy subje
ts and stroke subje
ts respe
tively. Thus thepositioning errors in stroke patients were about twi
e as large as in the healthysubje
ts. Steady state errors for opening the hand for grasp in healthy subje
tswere 14.6±11.0o, 18.8±16.2o and 19.1±11.6o for index, middle and ring �ngerrespe
tively and 18.5± 12.6o and 21.4± 14.4o for thumb abdu
tion and exten-sion respe
tively. In the stroke subje
ts hand opening steady state errors were
32.5±9.1o, 25.5±7.7o and 11.2±6.3o for index, middle and ring �nger respe
-tively and 8.2±6.3o and 6.9±3.6o for thumb abdu
tion and extension respe
tively.Angular errors of ∼ 20o will lead to a displa
ement of ∼ 3cm at the �nger tips,depending on the �nger length.108
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(b)Figure 6.5: Causes of failure in healthy subje
ts (a) and stroke subje
ts (b). Bars indi
ateo

urren
es of su

essful trials (gray) and failures (white) for ea
h of the following subtasks:positioning hand for grasping (POSg), opening hand for grasping (OPEN), grasping the obje
t(GRASP), hold and move the obje
t (HOLD), position the hand for obje
t release at the targetposition (POSr) and release the obje
t at the target position (RELEASE).
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(b)Figure 6.6: Measured arm/hand positions and �nger angles (solid) 
ompared to referen
e positionsand angles (dashed) for trials with a 5
m 
ube for subje
ts H1 (top) and S2 (bottom). For S2only the rea
h to grasp part is shown, trials were aborted due to ine�e
tive grasp. Thumb and�nger angles are reported relative to the subje
t's neutral position. Angles were de�ned zerowhen the subje
t relaxed his hand and stimulation was o�.
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6.3.3 Subje
t passivenessFor te
hni
al evaluation of the 
ombined system of roboti
s and ele
tri
al stimula-tion, it is important to know the performan
e independent of any user intera
tion.Therefore, subje
ts were instru
ted to relax. In addition, the healthy subje
tswere blindfolded to remove information on obje
t lo
ation and type. To 
he
kwhether the subje
ts were indeed passive during the trials, the total work duringea
h trail was 
al
ulated for the healthy subje
ts and 
orre
ted for the potentialenergy 
hange due to the measured height di�eren
e at beginning and end of thetrial. The average 
orre
ted work done by the robot on the user during the trialis 0.1±0.5J and 1.3±0.8J for subje
ts H1 and H2 respe
tively. 'These negligiblevalues indi
ate that the 
ombination of robot and subje
t behaved 
onservatively.6.4 Dis
ussionOur aim was to show the feasibility of using a system 
ombining roboti
s andfun
tional ele
tri
al stimulation for fun
tional tasks in whi
h the subje
t was pas-sive. From our results we 
an 
on
lude that the 
urrent system was not appli
ablefor (these) 
hroni
 stroke subje
ts, as we were unable to 
omplete the tasks su
-
essfully. However, the 
ombination of roboti
s and FES was shown te
hni
allyfeasible in healthy subje
ts. The high su

ess rates in healthy subje
ts, togetherwith the fa
t that the failure rate in stroke subje
ts was partially in�uen
ed byte
hni
al limitations, indi
ate the potential of the system for appli
ation in poststroke rehabilitation.6.4.1 Te
hni
al limitationsTwo te
hni
al limitations 
an be identi�ed after evaluation of the 
urrent system:1) a possible mismat
h in programmed obje
t lo
ations and a
tual obje
t lo
ationsand 2) interferen
e of the roboti
 arm 
u� with the ele
tri
al stimulation out
ome.In the 
urrent setup the obje
t lo
ation was pre-programmed in the robot 
on-troller. Therefore performan
e was prone to small deviations in manual obje
tpla
ement or in robot movement. Currently the applied virtual sti�ness was rel-atively low. An in
reased robot virtual sti�ness might improve robot positioning.Currently, this virtual sti�ness was limited by the noise level within the analog
ommuni
ation between the robot's embedded 
omputer and the xPC target 
om-puter. Even with an in
reased sti�ness, small errors in obje
t repositioning 
ouldstill lead to grasp failures, sin
e obje
ts were manually positioned at a marked po-sition and the robot was 
alibrated to move to that same marked position. Forfuture systems we suggest to in
orporate a
tive user involvement (desired in re-habilitation) in 
ombination with intention dete
tion to improve the positioninga

ura
y and redu
e the number of failures. Additional feedba
k of obje
t/targetpositions within the system 
ould also lead to a redu
tion of positioning errors, asthe user 
an then a
tively steer the system to the desired position.In subje
t S1, the arm 
onne
tion of the robot might have in�uen
ed theele
tri
al stimulation responses. Currently, the 
u� of the robot is atta
hed over111
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the middle of the forearm. Thereby, it is pla
ed over the ele
trodes and mus
lebellies, whi
h is likely to in�uen
e the stimulation responses. Redesign of the arm
onne
tion, su
h that it is atta
hed only near the elbow and near the wrist, willremove the problem of interfering with the stimulation and is therefore suggestedto in
rease out
ome.The healthy subje
ts were blindfolded to redu
e the possibility of voluntaryintera
tion. Sin
e obje
t positions were 
onstant over trials, subje
ts might havelearned the positions and 
ould still have a
tively 
ontributed to the movementbased on their proprio
eption. However, the small values for the net work done bythe robot during the trials are an indi
ation that a
tive user involvement is minimalduring the trials.6.4.2 Clini
al impli
ationsFully supporting the rea
h, grasp and release movements will be a �rst step towardsan integrated system for rehabilitation after stroke. To apply this system in the
lini
 or in a home environment, robot positioning and arm interfa
e should be im-proved as des
ribed above. In addition, four important modi�
ations are ne
essarybefore the system 
an have 
lini
al merit: 1) donning and do�ng time should beredu
ed, 2) a more mobile �nger measurement system should be used, 3) supportshould be tailored to the ability of the individual patient instead of full support and4) the user should be given 
ontrol by dete
tion of his/her intention. Suggestionsfor these modi�
ations are dis
ussed in the next paragraphs.To redu
e donning time, array ele
trodes (Popovi¢-Bijeli¢ et al. 2005; Kuhnet al. 2009; Male²evi¢ et al. 2012) 
ould be in
luded to automati
ally sear
h forthe best positions and possibly 
ompensate for altered stimulation responses due toskin or nearby mus
le movement. To redu
e model initialization time, intelligentsolutions are needed to start training early and improve the model during thetraining session. This 
ould be a
hieved by a form of initial automated ele
trodetesting (Male²evi¢ et al. 2012) and re
ursive model estimation (e.g. Moon et al.2005). In addition, models obtained from previous sessions might be used as astarting point. Further resear
h to �nd the optimal tradeo� between short modelinitialization time and high model a

ura
y is needed.A VisualEyez opti
al motion system was used in the experiments reported inthe 
urrent paper. This is perfe
tly suited for a laboratory setup, however for a
lini
al appli
ation su
h a system is not desired. For 
lini
al appli
ation a more
ompa
t and more plug and play solution is needed. Measurement gloves (Williamset al. 2000; Simone and Kamper 2005; Veltink et al. 2009; Oess et al. 2012)or 
ommer
ially available devi
es like Mi
rosoft Kine
t (Chang et al. 2011) orLEAP motion (Wei
hert et al. 2013) might be used as a more portable solution forfeedba
k of �nger angles.For
ing a passive subje
t in a spe
i�
 movement path without voluntary e�ortdoes not result in relearning of movement (Reinkensmeyer et al. 2009). To promotemotor relearning, the amount of support should be based on patient performan
esu
h that the patient is maximally a
tive and still able to 
omplete the task (Wol-112
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bre
ht et al. 2008). Therefore iterative learning 
ontrol (Freeman et al. 2009) orother assist-as-needed approa
hes (e.g. Wolbre
ht et al. 2008) are ne
essary to usethe 
urrent system su

essfully for rehabilitation.For rehabilitation purposes, it is desired that the patient 
an 
ontrol the move-ment (Huang and Krakauer 2009), therefore the system should be able to dete
tthe patient's intention. The measured intera
tion for
e might be used for this pur-pose. Due to inertia in the system, measured intera
tion for
es indi
ate intendedmovement by the user when the system itself is not moving. The system 
an beprogrammed to provide support either when a 
ertain for
e threshold is ex
eededor proportional to the measured for
e. Admittan
e 
ontrol s
hemes have been ap-plied for similar systems to let the system respond to a dete
ted intera
tion for
ewith movement based on a dynami
 model (Spenko et al. 2006; Du
haine andGosselin 2009; Huo et al. 2010). By 
hanging parameters in the dynami
 model,the support 
an be adjusted to a desired level while leaving the user in 
ontrol ofthe movement.With the mentioned further improvements, the 
urrent system has great po-tential for support of movement during post-stroke fun
tional training. Due tothe 
ompa
tness of the system, future versions might also be
ome appli
able in ahome environment, allowing for intensive therapy. However, as 
urrently only pas-sive movement was evaluated, the therapeuti
 e�e
ts need further investigation.6.5 Con
lusionA 
ombination of Model Predi
tive Control of FES and roboti
 arm support 
anbe su

essful in supporting fun
tional tasks. Currently, we have evaluated pas-sive rea
h and grasp with the 
ombined system. The approa
h was su

essful in
omplete fun
tional rea
h, grasp and release of obje
ts in only 37% of the trials.The main 
ause of failure was position mismat
h between the robot and the ob-je
t/target position. Based on high su

ess rates of the subtasks we expe
t toimprove performan
e even further by in
reasing the virtual sti�ness of the robotand by 
losing the positioning loop, i.e. feedba
k of the exa
t obje
t position to therobot. This 
ould be a
hieved either by arti�
ial measurement of obje
t position orby allowing the user to steer the robot, whi
h removes the need of preprogrammingthe positions.For therapy after stroke, the 
urrent approa
h should be extended towardsan assist-as-needed approa
h with user intention dete
tion to maximize patientinvolvement. Bene�ts and feasibility of su
h an approa
h should be further inves-tigated. However, sin
e passive movement has been shown te
hni
ally feasible, weare 
on�dent that redu
ing the support to engage the patients will be also feasiblewith the 
urrent system.
113
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Stroke is a major 
ause of morbidity in the western world. As life styles in lessdeveloped 
ountries are 
hanging, stroke spreads more throughout the entire world(Ovbiagele and Nguyen-Huynh 2011). The number of stroke survivors is likely toin
rease further due to graying of so
iety and 
ontinuously improving health-
are.Graying of so
iety also leads to a redu
ed number of available 
aregivers. Thus,stroke not only has a huge impa
t on an individual's life, but also 
auses a largeburden for the health 
are system due to the importan
e of intensive training topromote re
overy.Te
hnologi
al innovation 
ould be a solution to redu
e the stress on the health-
are system. Conventional stroke therapy (Langhorne et al. 2009) fo
uses ontraining movement of the a�e
ted limb. The assistan
e of fun
tional movementoften applied by physi
al therapists might be partially taken over and intensi�edby an automated system. The role of a physiotherapist will then be
ome moresupervisory, whi
h allows for simultaneous training of multiple patients or eventraining at home and thereby in
reased health-
are e�
ien
y. E�e
tiveness in poststroke rehabilitation is the subje
t of numerous studies in the �elds of rehabilitationroboti
s (Lum et al. 2002; Prange et al. 2006; Krebs et al. 2008; Kwakkel et al.2008; Loureiro et al. 2011) and fun
tional ele
tri
al stimulation (FES) (de Kroonet al. 2002; She�er and Chae 2007). The e�e
ts of these te
hniques have beenshown as e�e
tive as 
onventional therapy. A 
ombination of te
hniques with fo
uson fun
tional movements might even be superior to 
onventional therapy.The aim of this thesis was to develop and evaluate methods for proper 
ontrol ofan automated hybrid rehabilitation system: 
ombining roboti
s for rea
h assistan
eand FES for grasp & release to allow fun
tional upper limb movement training.For su

essful 
lini
al appli
ation, su
h a devi
e should be safe and easy to use bya non-expert and should allow for fast donning and do�ng to maximize availabletime for training.Fun
tional grasp and release is essential for manipulation of real obje
ts, how-ever without su

essful positioning of the arm (rea
hing out), grasp and releasebe
omes virtually useless from a fun
tional point of view. The fo
us of the thesislies mainly on te
hni
al feasibility of su
h a 
ombined system and its individual
omponents. The obtained knowledge will be dis
ussed in the following se
tions.It will 
ontribute to future developments of stroke rehabilitation systems, whi
haddress full fun
tional arm movements.7.1 Sele
tive ele
tri
al stimulation of grasp and releaseDexterous hand movement and ease of manipulation of obje
ts with di�erentshapes and sizes is an important fun
tion whi
h distin
ts human beings from mostother mammals. FES allows to externally a
tivate mus
les and assist movement(Mi
era et al. 2010). For rehabilitation purpose, surfa
e FES is desirable due toits non-invasiveness and thereby easier donning and do�ng. However, with surfa
eFES sele
tivity of mus
le a
tivation be
omes theoreti
ally limited due to spread ofthe applied 
harge. In 
hapter 2 the possibility and variability of �nding stimula-tion lo
ations on the forearm to extend individual �ngers was evaluated in healthy116



General dis
ussion

7

subje
ts. From the results it was 
on
luded that although it is possible to �ndappropriate lo
ations for ea
h degree of freedom, the exa
t positions of these lo
a-tions are highly variable between subje
ts. A subje
t spe
i�
 approa
h is thereforeadvo
ated.Subje
t spe
i�
 methods are further investigated in 
hapters 3 and 4. In 
hapter3 methods for modeling and 
ontrol of FES for for
e generation are presentedand evaluated for thumb for
e 
ontrol in healthy subje
ts and in 
hroni
 strokesubje
ts. The results indi
ate that a subje
t spe
i�
 approa
h des
ribing mus
lefor
e dire
tion by a single dire
tion and des
ribing for
e amplitude by a nonlinearsigmoidal 
urve is feasible to predi
t mus
le for
e responses stimulated by surfa
eFES. In addition, the feasibility of using the obtained model in two dimensionalfor
e 
ontrol was shown. However, in our study the 
hroni
 stroke patients' fatigueand small for
e ranges are limiting fa
tors. Nevertheless performan
e will likelyimprove with more training or appli
ation earlier after stroke. The use of a feedba
k
ontroller in addition to the feed forward path, shows superior results to usingfeedforward only, whi
h leads to the 
on
lusion that performan
e monitoring duringstimulation and 
losed loop 
ontrol is desired for a

urate for
e 
ontrol.Control of mus
les based on individualized models was shown feasible in 
hapter3, however tuning of all the individual 
ontroller parameters 
an be 
umbersomeand time-
onsuming. Therefore, in 
hapter 4 steps towards a more automatedapproa
h were taken and applied for movement 
ontrol in grasp and release. Againan individualized model is obtained. This model relates the stimulation amplitude ofmus
les responsible for �nger �exion, �nger extension, thumb opposition, thumb�exion and thumb abdu
tion to angular movement of the �ngers. To optimize
ontrol inputs su
h that given setpoint angles for all joints are rea
hed, a modelpredi
tive 
ontroller was implemented and evaluated. This 
ontroller was shown
apable of tra
king setpoint angles and furthermore suitable for fun
tional graspand release of real obje
ts of di�erent sizes. Assisted intera
tion with real obje
tsprovides the opportunity of fun
tional task training, whi
h is believed to be moree�e
tive than movement training alone (Timmermans et al. 2009). Chapter 4shows that this intera
tion is feasible with the presented model predi
tive 
ontrollerand is therefore a big step towards more fun
tional task training.7.2 Roboti
 support of rea
hingGrasp and release movement is only fun
tional when 
ombined with a proper rea
h-ing movement. In 
ollaboration with proje
t partners a prototype roboti
 arm ma-nipulator was developed. The devi
e and the 
ontrol methods are presented in
hapter 5 together with the te
hni
al evaluation of the devi
e. The system has thete
hni
al ability to 
ompensate the user's arm weight and to support the arm duringmovement. Due to its inherent safety and ease of use, the system has potential tomake the �nal step to 
lini
al appli
ation, or even home use. However, for 
lini
alappli
ation, an integrated system whi
h not only addresses rea
h training but alsotraining of grasp and release will be more bene�
ial, as su
h a system 
ould beused to support fun
tional arm movement during rehabilitation. 117
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7.3 Integrated system for support of rea
h, grasp and releaseIn the study des
ribed in 
hapter 6, the system for grasp and release support (
hap-ter 4) and for assistan
e of arm movement (
hapter 5) were 
ombined for trainingof fun
tional tasks. The system was evaluated during passive fun
tional movementtasks in healthy subje
ts and severely a�e
ted 
hroni
 stroke subje
ts. From a te
h-ni
al point of view, full support of the movement (i.e. the subje
t is 
ompletelypassive) is the most demanding task. In addition, severely a�e
ted 
hroni
 strokesubje
ts are the most demanding group, as these subje
ts often have very limitedfun
tion and in
reased joint sti�ness (Kwakkel et al. 2004). Performan
e of thesystem in these subje
ts is 
urrently not su�
ient for 
omplete fun
tional move-ment support. None of the trials in the stroke subje
ts were 
ompleted su

essfully,partially due to ina

urate arm positioning and partially due to limited response tothe ele
tri
al stimulation of hand mus
les. However, in healthy subje
ts high su
-
ess rates were a
hieved. The su

ess rates of the movement subtasks in healthysubje
ts are high (76%-100%). Analysis of the non-su

essful trials revealed thatrobot positioning a

ura
y is a 
riti
al fa
tor, whi
h needs improvement in a futureversion. This 
ould be solved by a higher virtualsti�ness, feedba
k of obje
t posi-tion and/or a
tive 
ontrol of robot position by the user. The high su

ess rate inhealthy subje
ts show the feasibility of an integrated system to support fun
tionalmovement tasks. The fa
t that su

ess in severely a�e
ted 
hroni
 stroke subje
tswas in�uen
ed partially by te
hni
al limitations show the potential of the systemfor appli
ation in post stroke rehabilitation.7.4 Towards 
lini
al appli
ationThe roboti
 manipulator presented in 
hapter 5 was shown e�e
tive for both grav-ity 
ompensation and a
tive three dimensional assistan
e. Thereby, the devi
eallows for training of more severely a�e
ted patients 
ompared to devi
es whi
honly provide gravity support or two dimensional assistan
e (Hogan et al. 1992;San
hez et al. 2006; Stienen et al. 2009b). The devi
e is less powerful than strongexoskeletal based devi
es (Perry et al. 2007; Nef et al. 2007) whi
h makes it more
ompa
t, light-weight and safe while its power is still su�
ient for assistan
e offun
tional movement tasks. In addition, FES based on the model predi
tive 
on-trol approa
h presented in 
hapter 4 was shown su

essful for fun
tional grasp andrelease tasks in stroke patients. The main fo
us for improving this methodologyshould therefore lie on the pra
ti
al implementation. Currently, ele
trode posi-tioning and model identi�
ation is time 
onsuming and dependent on extensiveanatomi
al knowledge as appropriate positions for sele
tive mus
le a
tivation varylargely between subje
ts (
hapter 2).A system to properly target motor relearning should address the following threeaspe
ts: 1) a
tive user involvement, 2) dete
tion of user intention and 3) allow forfrequent training. The 
urrent evaluation of the �nal integrated system presentedin 
hapter 6 fo
used only on te
hni
al feasibility of passive movements. To be
lini
ally appli
able, it is important that the user is not passive during training.118
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Motor relearning is promoted only when the user is a
tive and allowed to makemistakes (Reinkensmeyer et al. 2009). When the user is as a
tive as possible(i.e. operating at the limit of his/her ability) learning is expe
ted to be maximal.Therefore it is important that the system 
an adapt and is minimally a
tive duringthe fun
tional tasks. Preferably the system is just su�
iently a
tive to allow theuser to 
omplete the task, whi
h will in
rease motivation (Timmermans et al.2009). To allow the user to be maximally a
tive and make mistakes, the usershould also be allowed to initiate and steer movements during the task (Huangand Krakauer 2009). Therefore the system should �know� the intention of theuser. For frequent training, an ideal solution would be to pla
e the training devi
eat the patient's home. Re
ommendations for modi�
ations and extensions of the
urrently presented methods in light of these three aspe
ts are dis
ussed in thenext subse
tions.7.4.1 A
tive user involvementTo maximize patient a
tivity and thereby motor learning, assistan
e should beminimized. Wolbre
ht et al. (2008) suggested assist as needed algorithms with aforgetting fa
tor and a learning fa
tor. In this approa
h the system learns the abilityof the patient by gradually redu
ing assistan
e over time and dete
ting movementfailure. Upon failure, assistan
e is in
reased again to 
omplete the given task.When tasks have a repetitive nature, like walking or 
y
ling, a similar approa
h
ould be used to adjust the assistan
e during ea
h iteration (Bristow et al. 2006;Freeman et al. 2009). Su
h an iterative learning 
ontrol (ILC) approa
h 
ould alsoapply for training of repetitive rea
h and grasp tasks. However, the obje
tive ofrea
h and grasp tasks is to manipulate obje
ts and thereby the spe
i�
 path towardthe obje
t is less important. ILC is usually based on referen
e traje
tories for thewhole 
y
le. To be appli
able for fun
tional task training ILC should update theprovided assistan
e only based on the su

ess of the manipulation task. When thetask is unsu

essful, there is a need to automati
ally analyze the previous trial andidentify whi
h parts of the movement 
ause the failure and need additional support(e.g. Veltink et al. 1992; Franken et al. 1995). Further resear
h into su
h anapproa
h is re
ommended before appli
ation in a system as des
ribed in 
hapter 6.However, ILC based on minimum jerk referen
e traje
tories (Shadmehr and Wise2005) 
ould already improve the therapeuti
 e�e
t of su
h a system although itmay penalize jerky movement more than ne
essary to a
hieve the task goal.7.4.2 Dete
tion of user intentionVoluntary initiation of movement needs a system whi
h dete
ts start of movementby the user and responds a

ordingly. Dete
tion of user intention 
an be based onseveral biologi
al signals like brain a
tivity, mus
le a
tivity or skeletal movement.For appli
ation in the 
urrent hybrid system, signal dete
tion at the interfa
e be-tween system and user seems the most logi
al, whi
h leaves either mus
le a
tivity(EMG), arm movement or intera
tion for
e. Corbett et al. (2011) 
ompared dete
-119
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tion of EMG and for
e for 
ontrol of a prostheti
 hand and obtained similar resultsfor both interfa
es. As FES is also applied during the movement, the ele
tri
al�eld evoked by FES will also in�uen
e the EMG re
ordings. Although it is possibleto �lter out these stimulation artefa
ts (Sennels et al. 1997; Langzam et al. 2006),measurement of the intera
tion for
es seems more straightforward, espe
ially sin
eintera
tion for
es are already measured. Based on the measured intera
tion for
ethe system 
an provide assistan
e either when a 
ertain for
e threshold is ex
eededor proportional to the measured for
e, to make movement easier. Admittan
e 
on-trol s
hemes have been applied for similar systems to dete
t an intera
tion for
eand let the system respond with movement based on a dynami
 model (Spenko etal. 2006; Du
haine and Gosselin 2009; Huo et al. 2010). By 
hanging parametersin the dynami
 model, movement assistan
e 
an be adjusted.7.4.3 Therapy at homeStroke therapy in the patient's home environment might be a solution to simulta-neously in
rease training intensity and release the stress on the health 
are system.As des
ribed in 
hapter 5, the roboti
 system presented in this thesis already hasgreat potential for appli
ability in a home environment, due to its inherent safety(de
oupling of motor and load) and ease of use by a non-expert. However, for athome appli
ation of the integrated system as presented in 
hapter 6 several im-provements are desired. Main 
on
ern of the present system is the time to setup.Ideally the time to setup should only be a fra
tion of the training session durationand setup should be doable by the patient themselves. Currently, ele
trode pla
e-ment is 
umbersome and time 
onsuming and also model initialization takes toolong to be pra
ti
ally feasible.Ele
trode pla
ement is mainly time 
onsuming due to the variability betweensubje
ts as des
ribed in 
hapter 2. Therefore ea
h ele
trode is pla
ed individuallyand then responses are observed to verify proper pla
ement. This is neither timee�
ient nor suitable for performan
e by the patients themselves. In the pastde
ade, several attempts have been made to apply array ele
trodes, 
overing alarge skin surfa
e together with an automated algorithm to dete
t appropriatestimulation sites (DB Popovi¢ and MB Popovi¢ 2009; Keller et al. 2006; Male²evi¢et al. 2012). This would be an ideal solution for proper ele
trode pla
ement withoutrequiring experien
ed operators or extensive time.Estimation of the input-output relation between stimulation amplitude andmovement response is time 
onsuming be
ause of the relatively large number of
hannels and the repetitions needed to in
rease model 
ertainty. If array ele
trodeswould be used, even more 
hannels will be available. Therefore intelligent solu-tions are needed to start training early and improve the model during the trainingsession. This 
ould be a
hieved by a form of initial automated ele
trode testing(Male²evi¢ et al. 2012) and re
ursive model estimation (e.g. Moon et al. 2005).In addition, models obtained from previous sessions might be used as a startingpoint. Further resear
h into su
h solutions is needed and should also address theseparation of voluntary and arti�
ial a
tivity. When voluntary a
tivity is present120
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(se
tion 7.4.1) it is essential to subtra
t the voluntary a
tivity to properly modelthe arti�
ial 
ontribution to the movement. The other way around, a model of vol-untary ability would be even more useful, to predi
t the performan
e beforehandand update the provided assistan
e a

ordingly.7.5 Con
lusionIdeally, rehabilitation of upper extremities fo
uses at frequent fun
tional movementtraining (Timmermans et al. 2009) with maximized patient a
tivity (Wolbre
ht etal. 2008; Reinkensmeyer et al. 2009). An automated system 
an provide this typeof training when it addresses arm and hand simultaneously, provides a workspa
esimilar to daily living tasks and allows the patient to make mistakes. In this thesis,te
hni
al feasibility of an automated system 
ombining roboti
 rea
h support withFES based support of grasp and release was demonstrated (
hapter 6). The systemuses subje
t spe
i�
 
ontrol approa
hes (
hapters 2, 3 and 4) and a novel roboti
end-point manipulator aimed at fun
tional therapy in a home environment (
hapter5). Several te
hni
al improvements to in
rease the ease of use and tailor assistan
eto ability are needed. But, importantly, the feasibility was shown and therefore the
ommer
ial market is en
ouraged to implement su
h te
hnology in everyday health-
are. Thereby, a

eptan
e of te
hnology applied in health 
are should furtherin
rease: partially by more eviden
e of e�e
ts of the applied te
hnology (Loureiro etal. 2011) and partially by fo
using on ease of use (Hidler and Lum 2011). Only withe�
ient 
ooperation of therapists, physi
ians, engineers and s
ientists, the futureof stroke rehabilitation will improve. The te
hnologi
 possibilities of 
ombiningroboti
s and FES in a subje
t spe
i�
 approa
h presented here 
ontribute to afuture with a healthy health-
are system, while maximizing fun
tional independen
eof stroke survivors.
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Summary



Rea
h, grasp and release is part of many fun
tional movements. Every daywe manipulate obje
ts without thinking how to 
oordinate our mus
les in order tomove our arms and �ngers. Over 75% of stroke survivors have upper limb motorde�
its, whi
h makes fun
tional arm and hand movements di�
ult and limits theirfun
tional independen
e. Upper limb therapies after stroke fo
us on regainingfun
tional ability and independen
e.Graying of so
iety leads to more stroke vi
tims and fewer health 
are profes-sionals. Te
hnology might be a solution to support 
ertain rehabilitation therapiesin future health 
are. Roboti
 systems have been developed for support of arm andhand movements and fun
tional ele
tri
al stimulation (FES) has been applied toa
tivate arm and hand mus
les. Therapeuti
 e�e
ts of both te
hniques have beenshown similar to 
onventional therapies. In addition, the appli
ation of these te
h-nologies allows for more frequent training with less physi
al e�ort for therapists.Therefore, te
hnology 
ould redu
e the burden on the health 
are system 
ausedby graying of so
iety.Repetitive pra
ti
e of fun
tional tasks has been shown bene�
ial for rehabilita-tion after stroke. Simultaneous support of rea
h, grasp and release is desired toin
rease fun
tional out
ome. Roboti
s has been applied su

essfully for arm sup-port. Support of grasp and release with external me
hani
s requires high 
omplex-ity, whi
h makes hand roboti
s 
urrently not very suitable for fun
tional movementtraining. FES, however, has been applied su

essfully for a
tivation of hand mus-
les. A hybrid approa
h, 
ombining FES support of grasp and release with roboti
rea
h support 
ould be an ex
ellent solution for enabling fun
tional task training.The aim of this thesis is to develop and evaluate methods for 
ontrol of anautomated hybrid rehabilitation system 
ombining roboti
s for rea
h assistan
eand FES for grasp and release to allow fun
tional arm and hand training. Forsu

essful 
lini
al appli
ation, su
h a devi
e should be safe and easy to use by anon-expert and should allow for fast donning and do�ng to maximize available timefor training. By the use of an automated system for stroke rehabilitation, whi
h isalso appli
able in the patient's home, therapy 
an be intensi�ed even further.For su

essful appli
ation of a hybrid system, solutions for individual 
ompo-nents have �rst been explored. In 
hapter 2, the possibilities for sele
tive a
tivationof individual �ngers by FES were explored and related to ele
trode pla
ement inhealthy subje
ts. Although it was shown possible to �nd appropriate lo
ations forea
h degree of freedom, the exa
t positions of these lo
ations are highly variablebetween subje
ts. A subje
t spe
i�
 approa
h for FES appli
ation is thereforedesired.The human mus
ular system is redundant: more mus
les than degrees of free-dom are present. In 
hapter 3, subje
t spe
i�
 
ontrol methods for a redundantmus
le system with FES were presented and evaluated. A subje
t spe
i�
 modelrelating the stimulation parameters of thumb mus
les to the evoked thumb for
esis used to predi
t thumb for
es in both healthy subje
ts and stroke subje
ts. Sub-sequently, the individualized mus
le models were used to 
ontrol the thumb for
etowards target for
e ve
tors by sharing the load among the individual mus
les.The approa
h was shown feasible in both healthy and stroke subje
ts, however the138



Summarynumber of tunable parameters makes the approa
h somewhat 
umbersome andtime-
onsuming for 
lini
al appli
ation.To redu
e the number of tunable parameters, steps towards an automatedmodel based method were taken and applied for 
ontrolling the movement of thethumb and �ngers during grasp and release of a
tual obje
ts (
hapter 4). The rela-tion between mus
le stimulation and movement of individual �ngers was measuredand modeled. A model predi
tive 
ontroller was implemented to use the estimatedmodel to predi
t the movement and 
al
ulate the required stimulation parametersbased on desired �nger joint angles. This 
ontroller was shown 
apable of tra
kingset point angles. Furthermore su

essful grasp and release of real obje
ts of di�er-ent sizes was demonstrated in both healthy and stroke subje
ts. Thereby, 
hapter4 demonstrates that 
ontrolled intera
tion with real obje
ts using FES is feasible,whi
h is a big step towards more fun
tional task training.Grasp and release movement is only fun
tional with proper rea
h movement.In 
ollaboration with proje
t partners a prototype roboti
 arm manipulator wasdeveloped. The devi
e and its 
ontrol methods were presented in 
hapter 5 togetherwith the te
hni
al evaluation of the devi
e. The system has the te
hni
al abilityto 
ompensate the user's arm weight and to support arm movements. Due toits inherent safety and ease of use, the system has potential to make the �nalstep to 
lini
al appli
ation, and even home use. However, for 
lini
al appli
ation,an integrated system whi
h not only addresses rea
h training but also training ofgrasp and release will be more bene�
ial, as su
h a system 
ould be used to supportfun
tional arm movement during rehabilitation.The systems for grasp and release support (
hapter 4) and for assistan
e ofarm movement (
hapter 5) were 
ombined for training of fun
tional tasks. Thesystem was evaluated during passive fun
tional movement tasks in healthy subje
tsand severe 
hroni
 stroke subje
ts (
hapter 6). From a te
hni
al point of view,full support of the movement (i.e. the subje
t is 
ompletely passive) is the mostdemanding task. In healthy subje
ts high su

ess rates were a
hieved. The su

essrates of the movement subtasks in healthy subje
ts were also high (76%-100%).The su

ess rates in healthy subje
ts show the potential of the system for fun
tionaltask support. However, performan
e of the system in preliminary tests with strokesubje
ts is 
urrently not satisfa
tory. None of the trials in the stroke subje
tswere 
ompleted su

essfully. Partially due to positioning ina

ura
ies relative tothe obje
t and partially due to limited �nger movement with FES. However, thein
luded stroke subje
ts were severely a�e
ted and in a 
hroni
 state. To be
on
lusive on post stroke appli
ability of the 
urrent system, additional evaluationin a broader range of stroke subje
ts is required.Ideally, an automated rehabilitation system should only support when ne
essary,put the patient in 
ontrol and allow for high intensive training. These additionalrequirements will 
hallenge the individual patient to his maximum 
apa
ity andthereby maximize therapy out
ome. In this thesis the te
hni
al feasibility andperforman
e was evaluated and therefore the subje
ts were asked to relax in theexperiments des
ribed in this thesis (i.e. no voluntary movement). A passive sub-je
t will be the most demanding situation for the system and was therefore used139



as evaluation setting. In 
hapter 7 possible dire
tions for a
tive user involvement,dete
tion of user intention and training in a home environment allowing for in-tensive training were dis
ussed. Firstly, assistan
e may be minimized based onpatient performan
e and task su

ess rates. Se
ondly, the user's intention 
ouldbe dete
ted from the measured intera
tion for
es. And �nally, the use of arrayele
trodes allows for ele
trode pla
ement by a non-experien
ed user and improvespra
ti
al appli
ability by redu
ing donning/do�ng time. With su
h extensions thesystem 
ould be taken to a next level, allowing for frequent fun
tional movementtraining with maximized patient a
tivity.This thesis demonstrates the te
hni
al feasibility of an automated rehabilitationsystem, whi
h 
ombines roboti
s and FES. The 
ommer
ial market is en
ouragedto implement su
h te
hnology in everyday health-
are. Thereby, a

eptan
e ofte
hnology applied in health 
are should further in
rease. The te
hnologi
 possi-bilities of 
ombining roboti
s and FES in a subje
t spe
i�
 approa
h presented herewill 
ontribute to a sustainable health-
are system, while maximizing fun
tional in-dependen
e of stroke survivors.
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Elke dag manipuleren we obje
ten zonder na te denken over de 
oördinatie vanindividuele spieren om onze armen en vingers te bewegen. Meer dan 75% van deCVA patiënten heeft een beperkte fun
tie van de bovenste extremiteit. Hierdoorworden fun
tionele arm- en handbewegingen bemoeilijkt, hetgeen hen fun
tioneelafhankelijk maakt. De nadruk van therapie na een beroerte ligt op het verhogenvan onafhankelijkheid door fun
tionele bewegingen te trainen.Vergrijzing van de samenleving leidt tot meer CVA sla
hto�ers en minder zorgprofessionals. Te
hnologie kan een oplossing zijn om bepaalde onderdelen van degezondheidszorg in de toekomst te ondersteunen. Er zijn robotsystemen ontwikkeldvoor ondersteuning van de arm en handbewegingen en ook fun
tionele elektris
hestimulatie (FES) wordt toegepast voor a
tivatie van arm en hand spieren. E�e
tvan beide te
hnieken is aangetoond en vergelijkbaar met 
onventionele therapieën.Bovendien biedt de toepassing van te
hnologis
he systemen de mogelijkheid omvaker te trainen met minder li
hamelijke inspanning voor therapeuten. Daaromzou te
hnologie de last op de gezondheidszorg als gevolg van vergrijzing van desamenleving kunnen verminderen.Herhaaldelijk oefenen van fun
tionele taken gunstig is voor revalidatie na eenberoerte. Gelijktijdige ondersteuning van reik en grijpbewegingen is gewenst om hete�e
t van therapie te verhogen. Voor arm ondersteuning is roboti
a reeds su

esvoltoegepast. E
hter vereist ondersteuning van de vingers met externe me
hani
a eenhoge 
omplexiteit, hetgeen hand roboti
a momenteel minder toepasbaar maaktvoor bewegingstraining. FES daarentegen is in het verleden met su

es toegepastvoor de a
tivering van handspieren. Een hybride aanpak, die FES ondersteuning vangrijpen en loslaten 
ombineert met roboti
a voor ondersteuning van reikbewegingenzou een uitstekende oplossing kunnen om het trainen van fun
tionele taken mogelijkte maken.Het doel van dit proefs
hrift is om methoden voor de aansturing van een ge-automatiseerd hybride revalidatie systeem te ontwikkelen en te evalueren. Doorrobot ondersteuning voor reiken te 
ombineren met FES ondersteuning voor grij-pen wordt fun
tionele arm en hand training mogelijk. Voor een su

esvolle klinis
hetoepassing, dient een dergelijk apparaat veilig en eenvoudig te gebruiken zijn dooreen leek. Het revalidatiepro
es kan nog verder worden geïntensiveerd indien eengeautomatiseerd systeem ges
hikt is voor thuisgebruik.Voor een su

esvolle toepassing van een hybride systeem, zijn oplossingen voorde afzonderlijke onderdelen eerst onderzo
ht. In hoofdstuk 2, werden de mogelijk-heden voor sele
tieve a
tivering van afzonderlijke vingers door FES onderzo
ht bijgezonde proefpersonen en gerelateerd aan plaatsing van de elektroden. Hoewel hetmogelijk is om ges
hikte lo
aties te vinden voor elke vrijheidsgraad werd aange-toond dat de exa
te posities van deze lo
aties zeer variabel zijn tussen vers
hillendepersonen. Een individuele aanpak voor de toepassing van FES is daarom gewenst.Het menselijk spierstelsel is redundant: er zijn meer spieren dan vrijheidsgra-den aanwezig. In hoofdstuk 3 zijn geïndividualiseerde methoden gepresenteerd engeëvalueerd om een redundant spierstelsel aan te sturen met FES. Een individueelmodel werd gebruikt om stimulatieparameters van de duimspieren te relateren aande opgewekte duimkra
hten. Vervolgens werden de geïndividualiseerde spiermo-142



Samenvattingdellen gebruikt om de duimkra
ht naar een doelkra
ht (ve
tor) te regelen door hetverdelen van de belasting over de afzonderlijke spieren. Deze aanpak is haalbaargebleken bij zowel gezonde proefpersonen als mensen die een CVA hebben gehad.E
hter, maken het aantal instelbare parameters de aanpak enigszins omsla
htig entijdrovend voor klinis
he toepassing.Om het aantal instelbare parameters te verminderen, zijn stappen genomenri
hting een meer geautomatiseerde methode die is toegepast voor het regelen vande beweging van de duim en de vingers tijdens pakken en weer los laten van ver-s
hillende obje
ten (hoofdstuk 4). De relatie tussen spierstimulatie en bewegingvan individuele vingers werd gemodelleerd. Een zogenoemde model predi
tive 
on-troller (MPC) werd gebruikt om het ges
hatte model te gebruiken om de bewegingte voorspellen en om de benodigde stimulatieparameters te berekenen op basis vande gewenste referentiehoeken voor de vingers. Deze regelaar bleek ges
hikt voorhet volgen van referentiehoeken. Daarnaast werd aangetoond dat de methodebruikbaar is voor het su

esvol pakken en weer loslaten van e
hte voorwerpenmet vers
hillende afmetingen in zowel gezonde proefpersonen als CVA patiënten.Daarmee toont hoofdstuk 4 aan dat ge
ontroleerde intera
tie met e
hte obje
tenhaalbaar is, hetgeen een grote stap is op weg naar training van fun
tionele taken.Handbeweging is alleen fun
tioneel met de juiste armbeweging. In samenwer-king met proje
tpartners werd een prototype robot ontwikkeld. Het apparaat en deaansturingsmethoden zijn gepresenteerd in hoofdstuk 5, samen met de te
hnis
heevaluatie van het apparaat. Het systeem bes
hikt over de te
hnis
he mogelijkhedenom het armgewi
ht van de gebruiker te 
ompenseren en armbewegingen te onder-steunen. Vanwege de inherente veiligheid en het gebruiksgemak, heeft het systeemde potentie om de laatste stap naar een klinis
he toepassing, of zelfs thuisgebruik,te maken. Voor klinis
he toepassing is een geïntegreerd systeem dat zi
h niet alleenri
ht op armtraining maar ook op training van grijpen en loslaten gunstiger, aan-gezien een dergelijk systeem gebruikt kan worden om fun
tionele armbewegingente ondersteunen tijdens revalidatie.De systemen voor het aansturen van de vingers met FES (hoofdstuk 4) envoor ondersteuning van de armbeweging (hoofdstuk 5) zijn ge
ombineerd voor deondersteuning van fun
tionele taken. Het systeem werd geëvalueerd tijdens pas-sieve fun
tionele bewegingen bij gezonde proefpersonen en bij ernstige 
hronis
heCVA patiënten (hoofdstuk 6). Vanuit een te
hnis
h oogpunt is volledige onder-steuning van de beweging (de persoon is volledig passief) de meest veeleisendetaak. Bij gezonde proefpersonen werden hoge su

esper
entages behaald. Ook deper
entages van de deeltaken bij gezonde proefpersonen waren hoog (76 % -100% ). De per
entages bij gezonde proefpersonen tonen de mogelijkheden van hetsysteem aan voor het ondersteunen van fun
tionele taken. E
hter, de prestatiesvan het systeem bij 
hronis
he CVA patiënten is nog niet goed genoeg. Geen vande testen in de CVA patiënten werden volledig su

esvol afgerond. Ten dele dooronnauwkeurigheden in arm positionering en deels door beperkt resultaat van hand-opening en grijpen. De geïn
ludeerde CVA patiënten waren zwaar getro�en en ineen 
hronis
he toestand. Extra evaluatie in een bredere groep CVA patiënten isvereist om goede 
on
lusies te kunnen trekken aangaande toepasbaarheid van het143



huidige systeem.Idealiter zou een geautomatiseerd systeem de beweging alleen ondersteunenwanneer dat nodig is, kan de patiënt het systeem zelf aansturen en biedt het sys-teem mogelijkheden voor intensieve taak training. Deze extra eisen maximaliserende inspanning voor de patiënt en daardoor het therapieresultaat. In dit proefs
hriftis de te
hnis
he haalbaarheid geëvalueerd en daarom werden de proefpersonen ge-vraagd om volledig te ontspannen in de in dit proefs
hrift bes
hreven experimenten(geen vrijwillige beweging). Het bewegen van een passief persoon is voor het sys-teem de meest veeleisende taak en is daarom gebruikt als uitgangspunt voor deevaluaties. In hoofdstuk 7 zijn mogelijke oplossingen voor a
tieve betrokkenheidvan de gebruikers, dete
tie van de gebruikersintentie en training in een thuisomge-ving voor hogere intensiteit besproken. Ten eerste, kan de ondersteuning wordenbeperkt op basis van de prestaties van patiënten en taak s
ores. Ten tweede zou deintentie van de gebruiker bepaald kunnen worden uit de gemeten intera
tie kra
h-ten. Tenslotte, zou het gebruik van elektrode arrays ervoor zorgen dat elektrodendoor een onervaren gebruiker geplaatst kunnen worden. Met dergelijke uitbreidin-gen kan het systeem naar een hoger niveau worden getild, waardoor hoogfrequentetraining van fun
tionele bewegingen met maximale a
tiviteit van de patiënt moge-lijk gemaakt wordt.Dit proefs
hrift laat de te
hnis
he haalbaarheid zien van een geautomatiseerdsysteem dat revalidatie roboti
a en FES 
ombineert. Het is nu aan de 
ommer
iëlemarkt om dergelijke te
hnologie in de dagelijkse gezondheidszorg te implementeren.Daarvoor dient a

eptatie van te
hnologie in de gezondheidszorg verder toe tenemen. De te
hnologis
he mogelijkheden van het 
ombineren van roboti
a en FESmet een geïndividualiseerde aanpak die zijn gepresenteerd in dit proefs
hrift zullenbijdragen aan een duurzame gezondheidszorg, terwijl fun
tionele onafhankelijkheidvan CVA patiënten wordt gemaximaliseerd.
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ht het meest gelezengedeelte van dit proefs
hrift. Een proefs
hrift dat er niet was geweest zonderde hulp van vele anderen en waarvan de totstandkoming op zijn minst een stukonaangenamer was geweest zonder de steun van vele anderen. Eenieder die opwelke manier dan ook een bijdrage heeft geleverd aan dit proefs
hrift of het pro
esdaar naartoe wil ik hartelijk danken. Een aantal personen wil ik hieronder in hetbijzonder noemen.Allereerst wil ik alle vrijwilligers (al dan niet met een beperking ten gevolge vaneen beroerte) hartelijk danken voor hun tijd en moeite om deel te nemen aan devers
hillende experimenten. Zonder jullie had ik geen data gehad om te analyserenen had dit proefs
hrift niet kunnen bestaan.Zonder prof. dr. ir. Van der Kooij was dit proefs
hrift er ook zeker nietgeweest. Mogelijk had ik dan niet eens overwogen om aan een promotieonderzoekte beginnen. Beste Herman, jij bent degene die me op deze mogelijkheid heeftgewezen en die me er warm voor heeft weten te maken om voor deze positie tekiezen. Terugkijkend op de afgelopen vijf jaar heb ik daar geen spijt van gehad,heel erg bedankt voor jouw inspanningen hiervoor. Ook tijdens het onderzoek zelfstond je altijd klaar (al dan niet fysiek, gezien je Zwitserse avontuur) met goedesuggesties (soms wat in overvloed) en een kritis
he blik. Je hebt me de ruimtegegeven om mijn eigen onderzoek te leiden en was in staat om me waar nodig bijte sturen door mij met kleine opmerkingen naar nieuwe inzi
hten te leiden. Enormbedankt daarvoor!Prof. dr. ir. Veltink, als 
o-promotor heb jij ook een belangrijke rol gespeeldin de invulling van mijn onderzoek. Beste Peter, mijn eerste ervaringen met FESwaren op jouw kantoor. Jij leerde me hoe ik de vers
hillende stimulatieparameterskon instellen en wat het e�e
t van de vers
hillende parameters is. Gaandeweg mijnpromotieonderzoek bleek jij behalve van FES, van veel meer dingen veel verstandte hebben. Ik dank je graag voor je s
herpe blik, heldere feedba
k en nuttige sug-gesties zowel tijdens het opzetten van de vers
hillende studies als bij het verwerkenvan de data en het s
hrijven van de artikelen. Dankjewel!Beste Alfred, als assistent-promotor was ook jouw hulp van groot belang. Ikheb me verbaasd over het gemak waarmee jij tijdens het oplossen van praktis
he(robot-)problemen (uitdagingen) in het lab s
hakelt tussen de praktijk en je grotetheoretis
he kennis. Even alles rustig bekijken op een rijtje zetten en beredeneren endan was de oplossing vaak snel binnen handbereik. Dank ook voor je nu
htere kijken vaak rake opmerkingen die voor mij weer als eyeopener konden dienen. Tijdenshet s
hrijven stond je klaar met goede suggesties om het verhaal nog helderder enmeer to the point te maken. Bedankt voor dit alles!Lieve Lianne, volgens mij kan de vakgroep Biomedis
he Werktuigbouwkunde(BW) zi
h geen betere se
retaresse wensen. Als duizendpoot sta je altijd klaar vooriedereen en wil en kan je alles regelen. Daarnaast ben je ook nog altijd geïnte-resseerd in de thuissituatie en zorg je voor gezelligheid in de vakgroep. Dankjewelvoor al je organisatoris
he hulp.Voor het realiseren van meetopstellingen moest ik regelmatig terugvallen op hette
hnis
h ondersteunende personeel. Met name Geert en later Wouter hebben mij146



Dankwoordhierbij grote diensten bewezen. Hoewel ik het zelf ook altijd leuk vond om dingente klussen, was het �jn om iemand in de buurt te hebben die er ook e
ht verstandvan heeft. Geert, jammer dat je geen deel meer uitmaakt van de vakgroep. Ik hebje aanwezigheid altijd als zeer prettig ervaren, zowel qua persoonlijkheid als voorhulp bij het realiseren van opstellingen.Alexander, Floor en Tjitske, samen vormden we de gezellige kamer. Dank julliewel voor het 
reëren van een prettige werksfeer, de welkome a�eiding. Ook bedanktvoor de gezellige etentjes (met zijn vieren op stap in Alex' Camaro zal vrees ik nietmeer gaan lukken, althans niet met droge voeten). Fijn dat ik bij jullie tere
ht konvoor suggesties, tips of babypraat.Ook alle andere 
ollega's van BW wil ik bedanken voor alle gezelligheid enbruikbare tips. In het bijzonder wil ik nog het BW futsal team en de lun
hwande-laars noemen. Het was heerlijk om tussendoor even je zinnen te kunnen verzettendoor samen een balletje te trappen of een frisse neus te halen. BW is de laatstejaren �ink uitgedijd, maar steeds gezellig gebleven. Allemaal bedankt! Thank youall! Also I would like to gratefully thank our German MIAS-ATD proje
t partnersTIC and Use-Lab. Christian you have been very helpful in designing and trouble-shooting the ele
tri
al stimulator. Many thanks for all your prompt answers andall the help in developing/modifying the stimulators. For the people at Use-Labmany thanks for all the good dis
ussions during meetings, the help in evaluatingthe robot and the o�ers to assist me with my experiments.Ook de Nederlandse proje
tpartners wil ik danken voor alle hulp en de prettigebijeenkomsten. De mensen van Dem
on en RRD ontzettend bedankt voor allehulp en prettige bijeenkomsten. Thijs, jij valt inmiddels in beide 
ategorieën. Jouwil ik in het bijzonder bedanken voor het sparren en de hulp en suggesties dieje had voor mijn onderzoek. Ik wens je heel veel su

es met de laatste loodjesvan jouw promotieonderzoek! Ook Gerdienke en Jaap wil ik hartelijk danken voorhet mij (samen met Cindy Lammertink namens de UT) wegwijs maken in METC-land. Zonder jullie hulp had het ongetwijfeld een stuk langer geduurd voordat iküberhaupt met mijn experimenten kon beginnen.Dear Alex, although I learned German in high-s
hool and grew up very 
loseto the German border, English has always been the 
ommon denominator in our
ommuni
ation. I owe you many thanks in whatever language. You started your
areer in Ens
hede with an internship within my PhD proje
t, de
ided to stay andhelp me out as student-assistant and �nally did your MS
 assignment on the sametopi
, whi
h even resulted in a 
hapter of this thesis. We had ni
e dis
ussions onhow to interpret results or improve setups and algorithms. I had a lot of fun withyou in the lab and I'm very happy to have you as my paranimph. Vielen Dank fürdie angenehme Zusammenarbeit!Beste Janneke, ik ben ook erg blij met jou als paranimf. We kennen elkaaral een hele tijd, het blijft leuk om je een beetje te stangen, maar eigenlijk ben ikgewoon blij om jou tot mijn vriendenkring te kunnen rekenen. Fijn dat je zonderna te hoeven denken (en zonder goed te weten wat van je verwa
ht wordt) dire
t'ja' zei op mijn verzoek om paranimf te worden. Dankjewel dat je dit voor me147



doet. Ik wens je heel veel su

es met je eigen promotieonderzoek!Alle vrienden en familie wil ik danken voor de nodige a�eiding die jullie megeboden hebben. Papa en mama bedankt voor de wetens
hap dat ik altijd opjullie terug kan vallen en ook voor het organiseren van de gezellige familieweeken-den. Thijs, Patri
k, Helma, Dirk en Harm bedankt voor het mede 
reëren van degezelligheid in die weekenden. Lieve brusters, we zien elkaar niet altijd even veel(miss
hien wel te weinig?) maar als we samen zijn is het altijd weer als vanouds:gezellig. Bedankt voor de nodige a�eiding de afgelopen jaren. Henk, Ineke, Sanneen Frans, �jn dat jullie altijd zo geinteresseerd waren in mij en mijn onderzoek.Bedankt voor de warmte en gezelligheid die jullie gebra
ht hebben de afgelopenjaren. Hanne, Marie en Bent, Freek en David bedankt dat ik jullie oom mag zijnen dank jullie wel voor het plezier dat jullie op de momenten dat we elkaar zagengebra
ht hebben met jullie onuitputtelijke energie.Judi, mijn lief, zonder jou was dit boekje er niet geweest. Dankjewel voor al jehandreikingen. Dank je wel voor het brengen van rust op momenten van twijfel.Dank je wel dat ik altijd heb kunnen rekenen op jou onvoorwaardelijke steun enliefde. Ik geniet van het leven met jou. Zo mogelijk nog meer nu Emma en Sep erbijzijn. Lieve Emma dank je wel voor al je verstopspelletjes, lekkere knu�els, leukedansjes en heerlijke la
h. Lieve Sep, dankjewel voor je aanwezigheid, leuke la
h enhet feit dat je me nu de tijd gunt om dit dankwoord te s
hrijven. Judi, Emma enSep, het spijt me dat ik de afgelopen tijd regelmatig (al dan niet fysiek) afwezigwas. Ik zal er voor zorgen dat ik niet meer opeens 'uit' sta, nu het proefs
hriftbijna af is.

148



Curri
ulum Vitae



Ard Westerveld was born in 1984 in Gendringen,The Netherlands. He re
eived his high s
hool diplomain 2002 from the 'Christelijk College S
haersvoorde'in Aalten. The same year he started studying 
om-puter s
ien
e at the University of Twente. In De
ember2003, he swit
hed to studying biomedi
al engineeringwith neural and motor systems as spe
ialization. Dur-ing his internship he went to the Sint MaartenskliniekResear
h Development & Edu
ation in Nijmegen, wherehe developed methodologies for auto-dete
tion of EMGonset times for the EMG analysis in varus/valgus gaitbefore and after a double osteotomy. In Mar
h 2009,he re
eived his Master's degree in biomedi
al engineering after a �nal proje
t onthe development and evaluation of methodology for studying 
alf mus
le length
hanges during human balan
e 
ontrol with ultrasound imaging and a 
ustom-built perturbation devi
e. Shortly thereafter, he started his PhD resear
h proje
tin the laboratory of biome
hani
al engineering at the University of Twente underthe supervision of prof. dr. ir. H. van der Kooij, prof. dr. ir. P.H. Veltink and dr.ir. A.C. S
houten. The resear
h fo
used on the evaluation of 
ontrol algorithmsfor a hybrid rehabilitation system 
ombining roboti
s and fun
tional ele
tri
al stim-ulation, aimed at fun
tional arm and hand therapy after stroke. This thesis is theresult of this resear
h.In 2010, Ard married to Judi Rougoor and they have two 
hildren. Theirdaughter Emma was born in 2011 and their son Sep was born in 2013. Sin
eJanuary 2014, he is working as a me
hatroni
al engineer at FWD Me
hatroni
alSolutions BV in Varsseveld, The Netherlands.

150



Publi
ations



Journal publi
ationsWesterveld, AJ, AC S
houten, PH Veltink, and H van der Kooij (2012). �Se-le
tivity and resolution of surfa
e ele
tri
al stimulation for grasp and release.�IEEE Transa
tions on Neural Systems and Rehabilitation Engineering. 20 (1),pp. 94�101.Westerveld, AJ, AC S
houten, PH Veltink, and H van der Kooij (2013). �Controlof thumb for
e using surfa
e fun
tional ele
tri
al stimulation and mus
le loadsharing.� Journal of NeuroEngineering and Rehabilitation 10 (1), p. 104.Ku
k, A, AJ Westerveld, PH Veltink, and H van der Kooij (2013). �Grasp 
ontrolin stroke patients using fun
tional ele
tri
al stimulation and model predi
tive
ontrol.� submitted.Westerveld, AJ, BJ Aalderink, W Hagedoorn, M Buijze, AC S
houten, and H vander Kooij (2013). �A damper driven roboti
 endpoint manipulator for fun
tionalrehabilitation exer
ises after stroke.� submitted.Westerveld, AJ, AC S
houten, PH Veltink, and H van der Kooij (2013). �Pas-sive Rea
h and Grasp with Fun
tional Ele
tri
al Stimulation and Roboti
 ArmSupport.� submitted.Conferen
e publi
ationsKooij, H van der, EHF van Asseldonk, AJ Westerveld, and AC S
houten (2009).�Measurement of 
alf mus
le length during perturbed standing.� So
iety forNeuros
ien
e 
onferen
e, Chi
ago (IL), USA.Boonstra, TA, AJ Westerveld, and H van der Kooij (2009). �Assessment of re�exmodulation during perturbed standing.� So
iety for Neuros
ien
e 
onferen
e,Chi
ago (IL), USA.Westerveld, AJ, H van der Kooij, PH Veltink, and AC S
houten (2009). �In�u-en
es of experien
ed gravitational sti�ness on ankle joint stabilization duringstanding.� IEEE Engineering in Medi
ine and Biology So
iety Benelux meeting,Ens
hede, The Netherlands.Westerveld, AJ, AC S
houten, PH Veltink, and H van der Kooij (2010). �Sele
-tivity of ele
tri
al stimulation for grasping support.� The XVIII 
ongres of theInternational So
iety of Ele
trophysiology and Kinesiology, Aalborg, Danmark.Westerveld, AJ, AC S
houten, PH Veltink, and H van der Kooij (2011). �Sele
-tivity and of ele
tri
al stimulation of �nger mus
les for grasping support.� 3rdDut
h Biomedi
al Engineering Conferen
e, Egmond aan Zee, The Netherlands.Westerveld, AJ, AC S
houten, PH Veltink, and H van der Kooij (2012). �Adaptive
ontrol of thumb tip position by multi-
hannel fun
tional ele
tri
al stimulation.�3rd Annual Conferen
e of the International Fun
tional Ele
tri
al StimulationSo
iety UK and Ireland Chapter, Birmingham, UK.152



Publi
ationsWesterveld, AJ, A Ku
k, AC S
houten, PH Veltink, and H van der Kooij (2012).�Grasp and release with surfa
e fun
tional ele
tri
al stimulation using a ModelPredi
tive Control approa
h.� 2012 Annual International Conferen
e of theIEEE Engineering in Medi
ine and Biology So
iety, San Diego, USA, pp. 333�336.Westerveld, AJ, AC S
houten, PH Veltink, and H van der Kooij (2013). �Sub-je
t spe
i�
 assistan
e of rea
h, grasp and release after stroke.� 4th Dut
hBiomedi
al Engineering Conferen
e, Egmond aan Zee, The Netherlands.Westerveld, AJ, AC S
houten, PH Veltink, and H van der Kooij (2013). �Thumbfor
e 
ontrol: mus
le load sharing with fun
tional ele
tri
al stimulation.� COSTA
tion TD1006 symposium on Rehabilitation Roboti
s, Ens
hede, The Nether-lands.1Westerveld, AJ, A Ku
k, AC S
houten, PH Veltink, and H van der Kooij (2013).�Passive Rea
h and Grasp with Fun
tional Ele
tri
al Stimulation and Roboti
Arm Support.� 18th annual 
onferen
e of the International Fun
tional Ele
tri
alStimulation So
iety, Donastia-San Sebastian, Spain.Beekhuis, H, Westerveld, AJ, AHA Stienen, and H van der Kooij (2013). �Designof a self-aligning 3-DOF a
tuated exoskeleton for diagnosis and training ofwrist and forearm after stroke.� IEEE International Conferen
e on RehabilitationRoboti
s, 2013, Seattle, United States.

1Re
eived a Vodovnik award for se
ond best student paper 153


	Blank Page



