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General introduction

Stroke strikes all over the world. "As if the integrity of my mind/body connec-
tion had somehow become compromised”, according to dr. Bolte Taylor (2009)
who describes her own stroke as a "step by step deterioration of the intricate neu-
rological circuitry”. Although each stroke is unique (see Box 1.1), the common
part is a compromised oxygen supply to certain brain regions resulting in cell death
and loss of function.

As each brain region is responsible for a specific function, the effects of a stroke
are highly dependent on the location and size of the region in which the stroke
occurred. In the first period after her stroke, dr. Taylor could not understand
language, read, write, walk or talk. Impairments caused by stroke include compro-
mised contralateral motor control, muscle weakness, spasticity, memory deficits,
loss of sensation, visual impairments and compromised bladder and bowel control
(Roth and Harvey 2002). In addition to these physical impairments, a stroke can
also influence psychological functions and can lead to depression, fear and anxiety.

f Box 1.1: Stroke \

Strokes are either ischemic (about
80% of all strokes) or hemorrhagic
(figure 1.1). An ischemic stroke is
characterized by obstructed cerebral vere impairments
blood flow. Either by thrombosis, em-  Minorimpairments g nursing home

bolism or lacunes (Roth and Harvey

(Almost) complete recovery
eath

2002)- Maderate to severe impairments
Figure 1.2: Prognosis after stroke®

Hemorrhagic strokes are caused by
rupture of a blood vessel (Donnan
et al. 2008) either inside the brain
(intracerebral hemorrhage) or in the
space around the brain (Subarachnoid
hemorrhage). Only 10% of the stroke
Figure 1.1: Schematic representation of Vi_CtimS will fully recover, others either
ischemic (left) and hemorrhagic (right) die shortly after stroke or have to cope

strokes. with minor to severe impairments, see
figure 1.2.
_ ?data obtained from http://www.uhnj.org/stroke/stats.htm, December 2013 )




Chapter 1

1.1 Influence of stroke on daily life

Worldwide, every three seconds a new stroke survivor (and his/her family) has to
cope with some of the functional impairments described above. Imagine not being
able to communicate or express your feelings, cannot remember things from your
life before the stroke or become dependent on others for daily movement tasks.
According to ES Lawrence et al. (2001), 77.4% of acute stroke patients have
upper limb motor deficits and 72.4% have lower limb motor deficits. Compromised
human motor control (Box 1.2) will lead to various limitations during activities of
daily living, like eating, drinking and personal hygiene, and diminish the patient’s
independency.

In a healthy situation, we are not consciously involved in moving our limbs or
in opening and closing our hands. Unconsciously we predict the weight of a cup of
coffee and pick it up to bring it to our mouth to drink. That is, if you like coffee
of course, otherwise you would probably think twice. Many stroke patients have
to work very hard to move their arm contralateral to the brain lesion in a desired
way. Over time this may improve due to the compensatory strategies (Roby-Brami
et al. 2003) or plasticity of the brain, i.e. the brain’s ability to rearrange and let
other regions take over functions from lost and affected regions (Johansson 2000;
Nudo et al. 2001; Barsi et al. 2008).

f Box 1.2: Cortical motor control \
Voluntary movements are initiated to The corticospinal tract crosses to the
achieve a desired goal. The brain opposite side of the spinal cord: right
integrates sensory information from sided movements are controlled by the
the body and it's environment to left hemisphere and vice versa. The
drive the appropriate muscles to ac- nerve endings of the alpha motor neu-
complish a certain task. During the ron in the spinal cord innervate the
task, sensory signals from musclesand muscles to generate the desired move-
skin are fed back to the brain and ment (Kandel et al. 2000).
used to control the movement (Kan-
del et al. 2000). Muscle activation A~
is driven from the primary motor cor-
tex (M1). M1 is classically divided
in subsections responsible for distinct 2 M1
body parts (Nudo et al. 2001) com- =
monly referred to as the homunculus
("little man™) as shown in figure 1.3. o )
Corticldriv rom M1 s projected to 78ure 13 Arsomica s of e
the alpha motor neuron in the spinal fie/d ang Rasmussen 1950)

Kcord through the corticospinal tract. .




General introduction

1.2 Motor (re)learning

People learn their whole life. The basis of learning is the formation of new neural
pathways and modification of existing pathways. After stroke, patients have to
(partially) relearn motor control. Motor learning is described by Bastian (2008) as
the "formation of a new motor pattern that occurs via long-term practice (i.e. days,
weeks, years).” A concept closely related to motor learning is motor adaptation,
which describes the modification of a movement due to perceived errors. For
instance, adaptation to be able to use a computer-mouse set to a different speed
as one is used to. This adaptation process can turn into a "learned” calibration
for the new environment. In rehabilitation, patients who can only move slowly or
inaccurate "do not need to learn the movement from scratch but do need substantial
recalibration for their altered neural control” (Bastian 2008).

Integration of sensory information is an important factor for (re)learning. In
monkey experiments, in which the primary sensory hand area was ablated, monkeys
were able to perform previously learned movements, but were not able to learn new
movements (Krakauer 2006). For generalization of tasks learned by training to
tasks in daily life, repetitive training of the same movement seems insufficient.
When patients are asked to pick up a glass at variable positions, they will probably
learn the movement of reaching for a glass in a specific place to a lesser extent,
but they might be better in generalizing the task to real life and also retention of
the learned movement is expected to be higher in the variable setting (Krakauer
2006).

1.3 Therapy after stroke

Some spontaneous recovery can occur after stroke (Nudo 2006). To further reduce
impairment and enhance functional independence of stroke survivors, additional
therapy is commonly provided. Stroke therapy either exploits brain plasticity to
relearn movement by extensive training or focuses on strategies to compensate for
lost functions. Applied training paradigms include arm ability training, constraint-
induced movement therapy, bilateral arm training, functional electrical stimulation
(box 1.3), interactive robot therapy and virtual reality based therapy (Krakauer
2006; Timmermans et al. 2009). These therapies should focus on task-oriented
training (skill learning) to obtain better generalization from rehabilitation setting
to daily life activities (Timmermans et al. 2009).

1.4 Functional electrical stimulation

The principles of functional electrical stimulation (FES) are explained in box 1.3.
FES is successfully applied as a prosthetic system to replace lost functions, mainly
after spinal cord injury (Sheffler and Chae 2007; Snoek et al. 2000). FES can
also be used as therapeutic system to improve motor function after stroke. FES
training can increase muscle strength and thereby reduce weakness due to non-use
(Powell et al. 1999; Rosewilliam et al. 2012) and can reduce pain and contractions
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(Malhotra et al. 2012). In a systematic review of randomized clinical trials, de
Kroon et al. (2002) identified positive training effects of FES training on motor
control. Barsi et al. (2008) showed increased cortical excitability after post stroke
FES training, which indicates regeneration of neural pathways.

1.5 Rehabilitation robotics

Robots are inexhaustive and therefore an ideal partner for intensive repetitive func-
tional training after stroke. The past decades, several robotic systems for arm and
hand therapy have been designed. MIT-manus (Hogan et al. 1992), HapticMaster
(Van der Linde et al. 2002), CADEN-7 (Perry et al. 2007), ARMin (Nef et al.
2007), Freebal (Stienen et al. 2009b) and Dampace (Stienen et al. 2009a) are ex-

e N

Box 1.3: Functional Electrical Stimulation

Functional electrical  stimulation
(FES) evokes neural activity in motor
nerve fibers. Generated action poten-
tials will lead to contraction of the
muscle, see figure 1.4. An important
difference compared to normal neural
activity is the reversed recruitment
order. With FES the thickest motor
nerve fibers are activated first, as op-
posed to physiological activation in
which the smallest-diameter nerves
are activated first (Sheffler and Chae
2007), leading to more coarse move-
ment and earlier fatigue. In addi-
tion, to obtain smooth contractions
with FES, motor units are activated
synchronously with relatively high fre-
quency, also leading to relatively early
muscle fatigue.

Three types of electrodes can be used
to transfer the generated stimulus to
the nerve: 1) implanted, 2) percuta-
neous or 3) surface electrodes. Im-
planted electrodes have the benefit of
properly cuffing the electrode around
the nerve leading to very selective ac-

Ktivation. However, this highly inva-

sive solution is mainly suitable for per-
manent FES applications. Surface
electrodes are placed further from
the target nerve and dedicated elec-
trode placement is required for selec-
tive muscle activation. However, cur-
rent spreads out in the tissue under-
neath the electrodes and activation of
multiple nerves cannot always be pre-
vented. Nevertheless, due to its non-
invasiveness, surface electrodes are
commonly used in rehabilitation prac-
tice, especially in training therapy (de
Kroon et al. 2002).

Figure 1.4: Schematic overview of muscle
activation with surface FES (1) or invasive
alternatives: nerve cuff (2), intraspinal (3)
or intracortical (4) stimulation (Stein and
Mushahwar 2005)

)
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amples of either robotic exoskeletons or end-point manipulators for arm training.
Also some systems for hand training have been developed (Worsnopp et al. 2007;
Lambercy et al. 2007; Dovat et al. 2008).

Two recent reviews evaluated the effects of robotic stroke therapy (Prange et
al. 2006; Krebs et al. 2008). They both conclude that robotic therapy can improve
motor control of the hemiparetic upper limb. Robotic aided therapy gives similar
results as conventional therapy (Kwakkel et al. 2008) and robotic manipulators
facilitate more intensive training and objective measurements (Lum et al. 2002),
without the need of a therapist being continuously present. Thus multiple pa-
tients could train simultaneously under supervision of a single therapist or patients
might even use robotics without supervision at home for intensive training with the
therapist only monitoring progress regularly.

1.6 The MIAS-ATD project: a hybrid approach

Robotics is ideal for intensive and repetitive training. However, from a mechanical
point of view, properly actuating the hand and fingers with a robotic device without
interfering movements is relatively complex. Functional electrical stimulation has
been successfully used for actuation of hand and fingers and might therefore be an
excellent extension for a robotic arm support system. A hybrid system will allow
for assistance of functional task-oriented movements, focusing on skill-learning
and therefore has potential as a rehabilitation device, aiming at generalization to
activities of daily life.

The ATD (Active Therapeutic Device) branch of the MIAS (Medical Innova-
tions for an Aging Society) project focuses on the development of a hybrid re-
habilitation system. The project is a consortium of Demcon, tic Medizintechnik,
Use-Lab, Roessingh Research & Development (RRD) and the University of Twente
(UT) funded by Interreg IV-A, part of the European regional development fund.
Within the consortium requirements and possibilities for a hybrid rehabilitation
system were analyzed. Prototype robotics were built by Demcon and prototype
stimulator equipment was provided by tic Medizintechnik. The prototypes were
evaluated by Use-Lab, RRD and UT.

1.7 Research questions

The main goal of this thesis is to develop and evaluate control algorithms for a
hybrid rehabilitation system combining FES and robotics. The thesis will provide
answers to the following questions that arise for proper control of a hybrid rehabil-
itation system.

e Which muscles involved in grasp and release are available to target with
surface FES? And to what extent can these muscles be selectively activated
with FES?

e What is the relation between stimulation input and force output of individual
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muscles? How can this relation be modeled and used to control the redundant
muscular system with FES?

e Can the developed prototype FES system activate hand muscles properly for
functional grasp and release?

e Is the developed prototype robotic manipulator suitable for assistance of
functional reach movements?

e Is the hybrid rehabilitation system combining robotics for reach and FES for
grasp and release effective for passive movement support?

1.8 Thesis outline

In this thesis several experimental studies are described to answer the questions
above and evaluate the prototype hybrid system. By the use of an automated
system for stroke rehabilitation, which is also applicable in the patient’s home,
therapy can be intensified. Ideally, an automated system should only support when
necessary, thereby maximizing patient effort (Wolbrecht et al. 2008). However,
in this thesis the technical feasibility and performance is evaluated and therefore
the subjects were asked to relax in the described experiments (i.e. no voluntary
movement). A passive subject will be the most demanding situation for the system
and is therefore used as evaluation setting.

In Chapter 2 the possibilities for selective activation of individual fingers by
functional electrical stimulation are explored. The main question to be answered
is whether it is possible to find specific locations for selective finger movements in
different healthy subjects.

Chapter 3 uses selective activation of three thumb muscles to control the forces
generated by the thumb in the plane perpendicular to the thumb. A model for the
relation between the stimulation parameters and the evoked forces is developed
and evaluated in both healthy subjects and stroke subjects. Subsequently, the
individual muscle models are used to control the thumb force towards target force
vectors by sharing the load among the individual muscles.

A shift towards position control is made in Chapter 4, where the relation
between muscle stimulation and finger movement is modeled and subsequently
used in a model predictive controller. This controller uses the estimated model and
predicts the necessary stimulation parameters based on desired finger joint angles.
To estimate the performance of this control approach, real objects are grasped and
released in healthy subjects and stroke subjects.

In Chapter 5, the design and technical evaluation of a new active therapeutic
device is presented. This robotic end point manipulator is capable of providing
guidance forces and counteracting the weight of the arm to make arm movements
easier.

Chapter 6 combines the systems presented in chapter 4 and chapter 5. The
combination of robotic supported reach movement and support of grasp and release
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by functional electrical stimulation is evaluated during passive reach, grasp and
release tasks in healthy subjects and stroke subjects.

Finally, in Chapter 7 the results of this thesis are summarized and discussed.
The discussion focuses on clinical implications of the knowledge currently obtained
and the required future steps to translate this knowledge to clinical applications.







Selectivity and resolution of
surface electrical stimulation
for grasp and release

Published as:

Westerveld, AJ, AC Schouten, PH Veltink, and H van der Kooij (2012). “Selectivity and
resolution of surface electrical stimulation for grasp and release.” IEEE Transactions on Neural
Systems and Rehabilitation Engineering. 20 (1), pp. 94-101



Chapter 2

Abstract
Electrical stimulation of arm and hand muscles can be a functional tool for patients with
motor dysfunction. Sufficient stimulation of finger and thumb musculature can support
natural grasping function. Yet it remains unclear how different grasping movements can
be selectively supported by electrical stimulation. The goal of this study is to determine to
what extent activation of individual fingers is possible with surface electrical stimulation for
the purpose of rehabilitation following stroke.
The extensor digitorum communis (EDC) muscle, flexor pollicis longus (FPL) muscle and
the thenar muscle group, all involved in grasp and release, were selected for stimulation.
The evoked forces in individual fingers were measured. Stimulation thresholds and selective
ranges were determined for each subject. Electrode locations where the highest selective
range occurred were compared between subjects and influences of different isometric wrist
positions were assessed.
In all subjects selective stimulation of middle finger extension and thumb flexion was pos-
sible. In addition, selective stimulation of index and ring finger extension was possible in
most cases. In 9 out of the 10 EDC subjects we were able to stimulate 3 or all 4 fingers
selectively. However, large variability in electrode locations for high selectivity was observed
between the subjects.
Within the designs of grasping prostheses and grasping rehabilitation devices, the variability
of electrode locations should be taken into account. The results of our study facilitate
the optimization of such designs and favor a design which allows individualized stimulation

Klocations.

)
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Selectivity and resolution of surface FES for grasp and release

2.1 Introduction

Grasp and release of objects is an important function in daily life. Both grasping
and releasing becomes difficult or even impossible for large numbers of patients
from several pathologies. Sufficient electrical stimulation (ES) of finger flexor and
extensor muscles, together with the thumb musculature, can help these patients
to become more functionally independent (e.g. Shimada et al. 2003) and regain
manual dexterity.

Besides directly producing functional hand movement, ES is used to train func-
tional movements in stroke patients (e.g. Barsi et al. 2008). For therapeutic ES
surface stimulation is preferred above percutaneous stimulation, because of the
non-invasive character. During therapeutic training sessions, ES can assist func-
tional movements, leading to motor re-learning of these movements (Krakauer
2006). Especially ES in combination with voluntary effort enhances motor re-
learning (DB Popovi¢ et al. 2009).

Reduced muscle selectivity, after stroke for example, leads to impaired fine
motor skills (Lang and Schieber 2004). If ES can be used to selectively activate
muscles, it could be used to train fine motor control. Small electrodes are able to
more precisely target muscles or muscle parts for selective activation than are larger
electrodes. This precise targeting, however, is increasingly vulnerable to deviations
in electrode location. Therefore, electrodes should be positioned precisely, which
will be more time-consuming compared to larger electrodes.

The muscle motor point positions relative to the skin are known to vary among
different subjects (Nathan 1979; Nathan 1990) and might change during move-
ments of the muscle itself or during the movement of nearby muscles (Cameron
et al. 1999). If the inter-subject variation and the variation due to movement both
are small, a general location may be determined, leading to near-optimal stimu-
lation for most patients. However, if the inter-subject variation is substantial or
stimulation locations vary largely during movement, a search procedure for the
individualized location will be necessary. Array electrodes, covering the variations
(Popovi¢-Bijeli¢ et al. 2005; M Lawrence et al. 2008; DB Popovi¢ and MB Popovi¢
2009) together with an online self-learning algorithm for electrode selection could
be a solution in that case.

Numerous objects manipulated during daily life (e.g. coffee cups, bottles,
spoons or pencils), require successful movement of the thumb to form a functional
grip. In addition, some patients suffer from involuntarily enlarged flexor activity,
which hampers extension of individual fingers (e.g. Lang et al. 2009) and therefore
the release of objects. Also, controlled closing of the hand by selective flexion of
the fingers becomes more difficult. In the pinch grip for instance it is important
that the other fingers do not interfere with the active fingers performing the grip.
For rehabilitation, where assistance should be applied only when needed, selective
finger extension (to counteract enlarged flexor activity) and thumb opposition are
the focus when developing effective tools for relearning grasp and release functions.

Anatomically, the extensor digitorum communis (EDC) muscle consists of sev-
eral parts actuating the different fingers. These parts are innervated by different

13
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nerve branches. Thus, theoretically it should be possible to selectively stimulate
extension of individual fingers (Leijnse et al. 2008). However, when voluntary ex-
tending a single finger, some movement of other fingers can be observed (van
Duinen et al. 2009). This results from both biomechanical coupling and combined
neuromuscular control (Lang and Schieber 2004). When ES is applied to induce
movement these couplings can also be expected.

In the past, several neuroprosthetic ES devices have been developed (Micera
et al. 2010), including the Bioness H200 (formerly Ness Handmaster) (Hara 2008),
Bionic Glove (Prochazka et al. 1997) and MecFes (Thorsen et al. 1999). All of
these devices successfully use surface ES to train or aid activities of daily life. In
the Bioness H200, electrodes are fixed to the orthosis at appropriate positions.
Once these positions are determined, donning and doffing becomes quite easy.
Problems with all of these devices include: somewhat limited muscle selectivity
and complexity in application due to problems with electrode positioning (Micera
et al. 2010).

Keller et al. (2006), assessed selectivity of ES applied to the finger flexors. They
observed couplings between the different fingers in all subjects. They were able to
selectively activate the middle and ring fingers in all subjects, although this was
not expressed quantitatively. Nathan (1990) assessed threshold current levels for
both targeted and overflow muscles in bipolar ES. Overflow to other muscles was
observed during stimulation of several arm muscles. Different parts of the EDC
muscle - for selective finger extension - were not considered.

The goal of the current study is to determine the selectivity and inter-subject
variability of ES applied to three muscles involved in grasping and releasing ob-
jects: extensor digitorum communis (EDC), flexor pollicis longus (FPL) and the
thenar muscle group. The main functions of these muscles are extension of the
fingers, flexion of the thumb and abduction/opposition of the thumb, respectively.
Knowledge of the selectivity and the variability will give insight in the accuracy
needed for electrode placement, which forms important input to the development
of new therapeutic tools using ES. The more selective a muscle can be activated,
the more possibilities for fine motor control will become available.

2.2 Methods

2.2.1 Subjects

In total 19 healthy subjects participated in this study, divided over two subgroups.
Group 1 (N=10; age range 23-27 yr; 5 male) participated in the extensor digitorum
communis part of the study and the group 2 (N=9; age range 23-30 yr; 6 male)
participated in the thumb musculature part of the study. All measurements were
performed on the left hand. Subjects gave informed consent and the experiments
were conducted in accordance with the Declaration of Helsinki.

14
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Figure 2.1: Schematic overview of custom-made setup for measurement of finger forces. The
subject’s five fingers were strapped in pre-loaded wires. Small load-cells measured wire tension
and as such finger force.

2.2.2 Experimental setup

A custom-made setup was used, consisting of an electrical stimulator and a setup
for measurement of finger forces.

Electrical stimulation

A battery-powered and current-controlled monophasic electrical stimulator with
a peak amplitude of 13.5 mA was used. A custom-built Matlab/Simulink (The
Mathworks inc., Natick, USA) interface controlled the stimulator wirelessly through
a BlueTooth connection. An oval-shaped electrode of 6x4 cm was used as the anode
and a round electrode, 1.5 cm in diameter, was used as the cathode. Electrodes
with similar size showed good results on both selectivity and comfort in a simulation
study by Kuhn et al. (2010).

Force measurement

To measure finger force, a custom-made setup was built, see figure 2.1. This setup
consisted of an aluminum frame in which the lower left arm of the subject was
strapped just proximal to the elbow and wrist joints. The setup allowed several
isometric positions. The fingers were constrained by pre-loaded wires. The tension
in the wires was measured by LSB200 load cells (Futek, Irvine, USA), with a
maximum force capacity of 45.3 N.

15
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Figure 2.2: To determine the position of the EDC and FPL grid points, small round labels were
placed relative to bony landmarks. Equidistant points for electrode placement were drawn between
these labels. For the thenar musculature a 3x 3 grid of 1 cm spaced was drawn on the thenar,
relative to the metacarpal bone of the thumb.

2.2.3 Experimental protocol

Electrode placement

The anode was placed on the posterior side of the lower arm, just proximal to the
ulnar styloid process. To position the cathode at the Flexor Pollicis Longus (FPL)
muscle and the Extensor Digitorum Communis (EDC) muscle, a web cam (Philips,
Eindhoven, The Netherlands) was added to the setup for virtual projection of grid
points. In addition, the webcam was used to take pictures of the electrode location,
see figure 2.2. For each subject, the grid points were scaled according to the size
of the subject’s arm, as the points were defined relative to bony landmarks. For
cathode placement on the thenar muscles, a 3 x 3 grid of 1 cm spaced points was
drawn on the thenar.

Stimulation protocol

The muscles were electrically stimulated with single pulses of 350 ys width. Every
second a stimulus was applied. For functional movement pulse trains with a fre-
quency of 12-50 Hz are often used instead of single pulses. We chose to use single
pulses to be able to directly connect the measured force response to the applied
stimulation pulse, without the need of taking the pulse history into account.

The stimulus amplitude started at 2 mA and was increased by 0.5 mA at two
second intervals, until the subject reported unbearable discomfort or the maximum
amplitude of 13.5 mA was reached. For most subjects, 13.5 mA was still bearable,
but they reported that the intensity was on the edge of painful stimulation.

16
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2.2.4 Recordings

Sensor data was amplified by SG-3016 Isolated Strain Gauge Input Modules (ICP-
DAS, Taipei, Taiwan) and acquired by a USB-6259 data acquisition module (Na-
tional instruments, Austin, USA) together with a pc running a custom-built Mat-
lab/Simulink (The Mathworks inc., Natick, USA) interface. Force responses were
measured at 1.6 kHz.

2.2.5 Data analysis

Force data from each sensor was pre-processed in two steps: 1) a first order But-
terworth high pass filter with a cut-off frequency of 1 Hz was applied to remove
drift and 2) a 50 ms window moving average filter was applied to reduce noise.

Selection of response thresholds and selective ranges

For each individual finger, the electrode location with the lowest response threshold
was determined. A threshold of 0.025 N was used to discriminate between sensor
noise and an actual force response. The selective range was determined as the range
between the response threshold of the specific finger and the response threshold
of any other finger. The size of the selective range gives information about how
selectively a single finger can be stimulated. See figure 2.3 for an example of
determination of response thresholds and selective ranges.

Variation between subjects

For each subject the electrode location(s) with the lowest response thresholds for
a specific finger was determined. This can be multiple grid points when multiple
points have the same response threshold. For each subject i, a matrix G;j with the
same size as the electrode grid is determined. G; is one at the lowest threshold
location(s) and zero otherwise. Finally, the normalized relative occurrence G was
determined for all subjects together by summing all G;'s and division by the number
of subjects, N, as described in equation 2.1.

G- 27 (2.1)

2.2.6 Influence of altered isometric position

Five different isometric positions were tested, see table 2.1. Threshold and selective
range were determined for the index finger (EDC stimulation) and the thumb (FPL
stimulation). Threshold levels and size of selective ranges of the different isometric
positions were compared to the neutral position using paired t-tests with Bonferroni
correction for multiple comparisons.

17
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Figure 2.3: Determination of response thresholds and selective range after EDC stimulation for a single grid location. Response threshold was determined
for each finger (indicated by the labeled arrows) as the stimulation amplitude where the resulting force exceeded a threshold of 0.025 N. The selective
range for a single grid-point was defined as the amplitude range where only one finger responded to the stimulation. In this specific example, the resulting

selective range is 3-6 mA.
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Table 2.1: Tested isometric wrist positions

Position Flexion/extension Pro/supination
1 neutral neutral
2 45° extension neutral
3 45° flexion neutral
4 neutral 9(° pronation
5 neutral 9(° supination
2.3 Results

2.3.1 Selectiveness of stimulation

Figures 2.4 and 2.5 show plots of the selective ranges for the different fingers of
the different subjects. For all subjects, it is possible to selectively stimulate middle
finger extension (figure 2.4). In addition, for most subjects, selective stimulation
is possible for the index and ring fingers. Selective stimulation of the little finger is
achieved in only 4 of 10 subjects. For the stimulation of thumb movement (figure
2.5), all subjects show the possibility for selective stimulation. Selective ranges
vary with the electrode locations.

In figure 2.6, box plots of the selective range sizes are shown for the four fingers
and the thumb (both FPL and thenar stimulation). For each subject the largest
selective range for a specific finger is selected (highest grey bar in each plot of
figure 2.4 and 2.5). The selective ranges for index and middle fingers are similar.
A decrease in selective range is observed for the ring and little fingers. Selective
ranges for the thumb are comparable to those of index and middle fingers.

2.3.2 Variation of response thresholds with respect to grid points

In figure 2.7 the normalized distribution of lowest-threshold grid-points across sub-
jects (see Eq. 2.1) is shown for the EDC muscle (A-D), the FPL muscle (E) and the
thenar muscles (F). For the different fingers, clustering of grid-points can be ob-
served. Thus the lowest-threshold points for the different fingers lie close together
for the different subjects. However, there was a large overlap between the different
fingers. In the thumb muscles, the points with the lowest threshold were more
spread over the grid. Thus the electrode location where the stimulation threshold
was lowest varied greatly between different subjects.

2.3.3 Influence of altered isometric position

Figure 2.8 shows responces of threshold amplitude and selective range to altered
isometric positions for the Index finger and the thumb. Distributions over the
subjects compared to the neutral position are shown.

There was a large variation in the responses for the different subjects. For both
EDC stimulation and FPL stimulation, no significant systematic change in either
threshold amplitude or selective range due to the altered isometric positions was
observed.
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Figure 2.4: Thresholds and selective ranges for the subjects (rows) of group 1 (N=10). The
columns present responses of each finger to stimulation of the extensor digitorum communis
muscle at selected electrode positions (squares). Data represented as explained in figure 2.3.

20



Selectivity and resolution of surface FES for grasp and release

I [mA] I [mA]

1 [mA]

1}.

I [mA]

| [mAl
My
4
"

TR

I[mAl

):% ) @

’
0
#

Figure 2.5: Thresholds and selective ranges for the subjects of group 2 (N=9). Each row represents
a single subject. The columns present responses of the thumb to stimulation of the flexor pollicis
longus muscle (first column) and the thenar muscle group (second column) at selected electrode
positions. Dark grey bars denote the selective range, the corresponding squares illustrate the
selected electrode position.
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Figure 2.6: Box plots of the maximal selective ranges for each of the fingers (EDC stimulation)
and the thumb (both FPL and thenar stimulation) over all subjects. On each box, the central
mark is the median selective range, the edges of the box are the 25th and 75th percentiles, the
whiskers extend to the most extreme selective ranges which are not considered as outliers, and
the outliers are plotted individually.
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Figure 2.7: Normalized relative occurrence (G) of subject-dependent lowest-threshold-positions
for (A-D) all fingers based on EDC grid points, (E) FPL grid points and (F) Thenar muscle grid
points
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Figure 2.8: Box plots of differences in index finger and thumb activation threshold (top) and
selective range size (bottom) with respect to neutral position for different isometric positions.
Positions shown are pro/supination combined with 45° of flexion (Flexion) and 45° of extension
(Extension) and neutral flexion/extension combined with 90° of pronation (Pronation) and 90° of
supination (Supination). On each box, the central mark is the median, the edges of the box are
the 25th and 75th percentiles, the whiskers extend to the most extreme data points which are
not considered as outliers, and the outliers are plotted individually.
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2.4 Discussion

All subjects showed the possibility to selectively stimulate individual finger exten-
sion and thumb flexion. We were able to selectively stimulate the thumb in all 9
subjects. In all subjects of the EDC group, we were able to selectively stimulate
at least 2 fingers. In 9 out of the 10 EDC subjects we were able to stimulate
3 or all 4 fingers selectively. However selective extension of the little finger was
not achieved in 6 of 10 subjects. These results indicate that some fine control of
the fingers might be possible with the use of ES. The electrode positions leading
to either the lowest threshold amplitude or the largest selective range varied sub-
stantially between subjects. Thus, although it is possible to selectively stimulate
different fingers, the application of this selective stimulation requires knowledge of
the individual properties of the subject. In addition, placement of the stimulation
electrode at the location with the lowest response threshold does not necessarily
yield the largest selective range. Therefore, the choice of electrode location should
depend on the required selectivity of the task. Assisting cylindrical grasp/release
for instance will require less selectiveness than assisting the pinch grip or other
more complex manual tasks.

2.4.1 Physiological aspects

The fact that selective stimulation is achieved, is likely the result of stimulation
of individual muscle parts through individual nerve branches. Leijnse et al. (2008)
observed arrangements of different EDC muscle bellies common to different spec-
imens. They observed the muscle part of the little finger was not consistently
separable from the ring finger part. In addition, the tendon of this muscle part
inserts into both ring and little fingers. This could explain the fact that we were
unable to selectively stimulate the little finger in 6 of 10 subjects in the current
study.

The relatively small selective ranges of the EDC muscle observed in our exper-
iments might be caused by mechanical coupling of the tendons, by the so called
juncturae tendinum, which connects the tendons of the different fingers on the
back of the hand (Lang and Schieber 2004). In addition, couplings in active neu-
romuscular control might influence the ability to selectively activate a single digit
negatively. Lang and Schieber (2004) observed this neuromuscular coupling to be
largest in the control of ring and little fingers, which also might have contributed
to the fact that we were unable to selectively stimulate the little finger in our study.

Muscle positions relative to the skin change during wrist movement and one
would expect that electrical stimulation parameters vary with this position change.
However, under altered isometric positions we did not observe systematic changes in
either threshold level or selective range. Our observations do indicate that there is
a large variability between the subjects regarding the influence of altered isometric
positions. Therefore, an individual approach for identifying influence of altered
wrist position and compensation for the possibly altered response is desirable.
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2.4.2 Related work

The current study showed similar results to the study of Keller et al. (2006). How-
ever they looked at the selectivity of finger flexor muscles, they also succeeded in
selective stimulation of most of the fingers, but were unable to selectively stimu-
late the little finger. Nathan (1990) did not look into the stimulation of individual
fingers, but was able to selectively stimulate the thumb by the FPL muscle and
the thenar musculature. For the FPL the selective ranges were quite similar. For
the thenar musculature he observed much larger ranges. This might be caused
by the usage of bipolar electrodes instead of monopolar in our case. In bipolar
stimulation, the current can be targeted more precise. This is likely to have more
effect in smaller muscles, like the thenar musculature.

Recently, Kuhn et al. (2009) showed that by the use of a proper combination of
gel layer resistivity and distance between the electrodes, multiple electrodes in the
array can be used to produce a larger virtual electrode, with similar properties of
a physically larger electrode. They state that the distance between the electrodes
should stay below 3 mm to keep losses small. The larger this size, the larger the
gel layer resistivity needs to be. In another study, Kuhn et al. (2010) compared
stimulation comfort and stimulation selectivity. The results showed that the most
comfortable electrode size depends on the thickness of the fat layer and the depth
of the nerve to be stimulated. In thin fat layers and for stimulation of superficial
nerves, smaller electrodes were more comfortable. Subjects can tolerate higher
current densities on smaller electrodes.

2.4.3 Limitations

For daily life applications, higher frequency stimulation would be more useful in-
stead of single pulse stimulation, because higher forces can be evoked. The goal of
the current study was to assess the extent to which individual fingers can be acti-
vated using electrical stimulation. This spatial selectivity depends on the geometry
of the underlying tissues. The geometry might change due to movement of the wrist
or due to contraction of the muscle itself. We did not find any systematic effects
of different wrist positions. In higher frequency stimulation the contraction of the
muscle will be larger compared to single pulse stimulation. Therefore, the geome-
try might change more. However, as our results indicate different wrist positions
not having a systematic effect on the selectivity, we do not expect much effect
of higher frequency stimulation on the muscle selectivity. Enoka and Fuglevand
(2001) compared twitch and tetanus data of muscles that control the digits of the
hand. Their comparison also indicated that for these muscles the twitch-tetanus
ratio does not change systematically with increasing force.

We did not specifically target the EDC muscle, but rather targeted the dorsal
skin of the proximal forearm under which the EDC is located. As a result other
nearby muscles, like Extensor Carpi Ulnaris (ECU) and EDM, might also be stim-
ulated by the pulses. Since the wrist was fixed in the setup, activation of the ECU
(a wrist muscle) should not influence our results. As we were unable to target the
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little finger selectively in most cases, it is unlikely that specific activation of the
EDM muscle has occurred instead of the EDC muscle.

Here healthy subjects were measured. In the future, this can be extended to
subjects from different pathologies mentioned before. Note that muscular proper-
ties and (local) innervation of the arm muscles are not affected as a direct result
of the mentioned pathologies. At a later stage, due to altered use or even non-use,
these properties will change of course. But even after secondary complications
geometry of the skin and its underlying muscles will not change much. It is this
geometry which is an important factor for spatial selectivity of surface stimulation.

The observed inter-subject variability in both electrode position for selective
stimulation and influences of altered isometric positions in a healthy subject pop-
ulation already demand for an individualized approach for each subject. Although
the response of the plegic limbs of patients with neurological damage is difficult
to predict, it is unlikely that variability will decrease. Thus, designs of future
grasp-and-release rehabilitation devices should include the possibility to position
the stimulation electrodes according to the needs of the individual patient.

In the current study, we did not take skin thickness or thickness of the sub-
cutaneous fat layers of the individual subjects into account. This variation in fat
layer thickness might explain the variability in stimulation levels and selectiveness
partially, but it is expected that the fat layers of our subjects had a much smaller
variability than the variability of the stimulation responses.

Subject comfort was not explicitly measured in our study. Stimulation was
stopped if subjects reported unbearable discomfort. In most cases subjects were
able to withstand a stimulation intensity of 13.5 mA, which was the limit of our
stimulator hardware. In theory, stimulation hardware with a broader stimulation
range, might have led to different results, i.e. larger stimulation ranges. However,
in most cases multiple fingers responded at a stimulation intensity of 13.5 mA,
thus stimulation was not selective anymore. In addition, most subjects reported
the stimulation intensity of 13.5 mA on the edge of painful stimulation. Therefore,
we do not think the somewhat small range of the stimulation hardware has limited
our results.

2.4.4 Implications for rehabilitation

We measured isometric forces resulting from single pulse stimulation to determine
selectivity of surface electrical stimulation. As such we cannot exactly determine
whether the selective stimulation is applicable in a rehabilitation setting or in daily
life. However, we can relate measured forces to the thumb force needed in lifting
a glass filled with water (/0.25 kg) and finger forces needed to overcome enlarged
activity of flexor muscles.

Lifting a 0.25 kg object, assuming a coefficient of friction of 0.5, requires a force
of 5 N exerted by all fingers together. Kamikawa and Maeno (2008) estimated
force distribution ratios across the fingers and their phalanges: a required force
of 5 N leads to a desired force of approximately 0.55 N to be exerted by the
proximal phalanx of the thumb. Enoka and Fuglevand (2001) estimated a twitch-
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tetanus ratio of 1:3 for the muscles controlling the digits. Applying this ratio to
the maximum selective forces currently measured, leads to exerted forces of 0.6 N
at the proximal thumb phalanx due to tetanic stimulation, which is enough to lift
a 0.25 kg object.

At the medial phalanges of the fingers we measured extension forces around
0.1 N. According to Monster and H Chan (1977), the relaxed EDC muscle has a
twitch-tetanus ratio of about 1:5. This ratio leads to an estimated tetanic force of
0.5 N at each of the medial finger phalanges. To the best of our knowledge, there
exists no literature on flexion forces of individual fingers due to enlarged activity.
We believe an estimated tetanic forces of 0.5 N can be used for (at least assistance
of) extension of an individual finger suffering from enlarged flexor activity.

Based on these numbers, it is likely that the selective stimulation we observed
in our measurements can be useful for application in rehabilitation and daily life.
However, direct measurements would give a more clear view on this aspect.

2.5 Conclusion

The goal of the current study was to determine the selectivity and inter-subject
variability of ES applied to muscles involved in grasp and release. The results of
this study show that it is possible to selectively stimulate a single finger in most
subjects. However, the extent of this selective stimulation is highly variable be-
tween different fingers and between different subjects. In addition, the possible
grid points for this selective stimulation differ strongly between subjects. In our
opinion, array electrodes are very useful for future designs of grasping prostheses
and grasping rehabilitation devices. The use of array electrodes provides the pos-
sibility of automatic customization. So ES, even for more selective stimulation
with smaller electrodes, can be applied in a plug and play manner. Because of the
possible change of electrode locations during movement and the time variance of
the muscular system, an online self-learning algorithm which continuously identifies
the best electrode locations for the given task under the changing circumstances
can be used. A model which maps electrode locations to produced finger forces
under different angles and subject properties will be useful to predict outcomes.
Such model can be used in a later stage to control ES of grasp and release in an
efficient manner. The results presented here, facilitate the optimization of such
techniques and the development of future ES devices in general.
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Chapter 3

Abstract

Stroke survivors often have difficulties in manipulating objects with their affected hand.
Thumb control plays an important role in object manipulation. Surface functional electrical
stimulation (FES) can assist movement. We aim to control the 2D thumb force by predicting
the sum of individual muscle forces, described by a sigmoidal muscle recruitment curve and
a single force direction.

Five able bodied subjects and five stroke subjects were strapped in a custom built setup.
The forces perpendicular to the thumb in response to FES applied to three thumb muscles
were measured. We evaluated the feasibility of using recruitment curve based force vector
maps in predicting output forces. In addition, we developed a closed loop force controller.
Load sharing between the three muscles was used to solve the redundancy problem having
three actuators to control forces in two dimensions. The thumb force was controlled towards
target forces of 0.5 N and 1.0 N in multiple directions within the individual's thumb work
space. Hereby, the possibilities to use these force vector maps and the load sharing approach
in feed forward and feedback force control were explored.

The force vector prediction of the obtained model had small RMS errors with respect to
the actual measured force vectors (0.22+0.17 N for the healthy subjects; 0.17+0.13 N
for the stroke subjects). The stroke subjects showed a limited work range due to limited
force production of the individual muscles. Performance of feed forward control without
feedback, was better in healthy subjects than in stroke subjects. However, when feedback
control was added performances were similar between the two groups. Feedback force
control lead, especially for the stroke subjects, to a reduction in stationary errors, which
improved performance.

Thumb muscle responses to FES can be described by a single force direction and a sig-
moidal recruitment curve. Force in desired direction can be generated through load sharing
among redundant muscles. The force vector maps are subject specific and also suitable in
feedforward and feedback control taking the individual’s available workspace into account.

kWith feedback, more accurate control of muscle force can be achieved.

~

)
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3.1 Introduction

Stroke has become a major cause of morbidity and mortality in the western world.
Incidence of stroke also increases in less developed countries as a result of changing
life-styles (Ovbiagele and Nguyen-Huynh 2011). Greying of society and improved
health-care are likely to result in an increase of stroke survivors. Functional in-
dependence of stroke survivors is highly influenced by their ability to perform a
successful grasp. In many activities of daily living, like drinking or opening a door,
grasp and release is an essential part of the required movement.

Functional electrical stimulation (FES) of hand muscles can be helpful to train
grasp and release in stroke subjects (Crago et al. 1991; DB Popovi¢ and MB
Popovi¢ 2009; Micera et al. 2010). Depending on the ability of the individual
patient, the assistance may be selectively (chapter 2) increased or decreased in
order to maximize the voluntary activity which is important in relearning movements
(Wolbrecht et al. 2008).

Grasping comprises coordinated finger and thumb motion and controlled force
exertion on the object to be held. As muscles initiate human movement, accurate
control of muscle force is a prerequisite for movement control. For grasping tasks
the fingers can be regarded as single degree of freedom (DoF) joints, since move-
ment of the individual phalanges is coupled because of the under actuation of the
finger. Furthermore, rotation along the flexion-extension axis of the finger is by
far the most important movement for grasping and releasing objects. The thumb,
however, requires a different approach as it moves along multiple axes. Controlling
force and movement of the thumb will be most challenging and may serve as a
model, which may be generalized/reduced to the single DoF case for the other
fingers.

A healthy thumb is actuated in several directions by nine muscles in total
(Kaufman et al. 1999; Pearlman et al. 2004). However, not all nine muscles can
be targeted properly with surface FES. Mainly, because of overlying muscles and
nearby sensory nerves making stimulation uncomfortable. Therefore, only a small
subset of thumb muscles is available for FES with surface electrodes. This limits
the movements which can be controlled with FES. However, thumb movements
relevant for grasping (mainly opposition) are feasible with surface electrodes.

Force distribution over multiple muscles is commonly applied in biomechanical
modeling, solving actuator redundancy problems for a given task (Happee 1994;
Prilutsky and Zatsiorsky 2002). This load sharing approach might also be useful
for activating a redundant musculoskeletal system. In addition, by sharing the load
over all available muscles we maximize the available range of force. However, to
our knowledge, load sharing has not been applied to external activation of muscles
with surface electrical stimulation. We will evaluate this possibility and expect
this approach to result in accurate force control with a force distribution over the
individual muscles optimized by minimizing the sum of squared recruitment over
all muscles.

Recently, Lujan and Crago (2009) measured thumb forces evoked by three
thumb muscles in healthy subjects and one spinal cord injured patient. Using the
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measured forces they trained an artificial neural network (ANN) for feed forward
force control. They showed good control of the isometric thumb force in 2D. With
the current study we aim at a more transparent approach: using linear combina-
tions of estimated muscle force vectors instead of using a black-box ANN. This
approach gives us the benefit of learning more of the underlying physiological sys-
tem, by comparing combined muscle responses with individual muscle responses.
In addition, it might allow for a more generally applicable approach, without the
need of training an ANN.

The goal of the current study is twofold: 1) Is it possible to describe thumb
muscle responses to FES by a sigmoidal muscle recruitment curve and a single
direction of force? And if so, are these so called muscle force maps subject specific,
suitable for stroke subjects and time-invariant? And 2) Are muscle force maps
suitable for use in 2D thumb force control with FES applying load sharing? And
if so, is feed forward control only sufficient and is the approach also suitable for
stroke subjects?

3.2 Methods

We will introduce the proposed generalized muscle force model for thumb force
control and muscle load sharing first. Thereafter we will describe the experimental
evaluation of this model in both healthy subjects and stroke subjects.

3.2.1 Generalized muscle force model

We aimed at predicting muscle force resulting from FES by a relatively simple
model. At a specific thumb posture we assumed that the force direction of each
muscle, @, is constant and that a nonlinear sigmoidal relation exists between the
stimulation amplitude and the generated muscle force.

Fa)=— ¢ c-—Pu_ (3.1)

l1+e b 1+ ePsi

In Eq. 3.1, |F(A))| is the force magnitude of muscle i at stimulus amplitude A;;
pi1 is related to the force saturation level, i.e. the maximal output force of that
muscle, pj2 is related to the inflection point of the sigmoidal recruitment curve and
pi3 is related to the horizontal scaling of the recruitment curve, i.e. the amplitude
range. The latter term in Eq. 3.1 is an offset term, ensuring zero force if the
amplitude is zero. The muscle force directions, together with the maximal force
amplitudes for each muscle represents the force vector map for a system of multiple
muscles, see figure 3.1 for an example.

Feedforward thumb force model
We assumed a linear vector summation of the muscle forces acting around the
same joint.

F- iixnﬁmn [Z?j((gﬂ (3:2)
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In Eq. 3.2, the predicted thumb force vector F, is the vector sum of the individ-
ual muscle forces (n = 3), modelled as a recruitment fraction, X, of the maximal
muscle force magnitudes, |Ifmx,i|.

The model of Eq. 3.2 was used to obtain the muscle stimulation levels given
a desired thumb force. This inverse problem is redundant: three muscles can be
stimulated to obtain a thumb force in two directions. In our (real-time) controller
implementation, we addressed this redundancy problem by minimizing the squared
muscle recruitment. Minimal summed force is a typical criterion also used in
musculoskeletal modeling and load sharing studies (Happee 1994; Prilutsky and
Zatsiorsky 2002). The recruitment was modeled as a fraction of the maximal
force, thus we obtained a bounded problem which can be formulated as minimizing
the vector norm shown:

HF,mxx- S (3.3)

2
2

In which F; is the [2x1] column vector equal to the reference force and Fix is
the [2x3] matrix containing the maximal X and y forces of each of the three muscles.
X is the [3x1] column vector with individual muscle recruitment fractions. To take
the bounds on X into account we reformulated the vector norm shown in 3.3 as the
equation shown in Eq. 3.4.

argminX' F1 FraxX — 2F,T FresX 4+ F.TFy (3.4)
x€[0,1]

Since the latter term is independent of X, the optimal recruitment, X, minimizing
Eq. 3.4 can be written as a quadratic problem of the form as shown in Eq. 3.5,
with Q= FnTmFmax and €= FnT{axFr.

argmin}XTQX— ¢'x (3.5)
x€[0,1]

Finally the calculated reference forces for each muscle, XFyax, are converted to
stimulation amplitudes by using the inverse of the sigmoidal recruitment (Eq. 3.1)
curve shown in Eq. 3.6.

Pai
IR|+C

A =—psln < - 1) + Pzi (3.6)

The combination of obtained stimulation amplitudes, A;, is the combination
which theoretically would produce a force equal to the reference force, i, or at least
the force which is minimizing Eq. 3.3 when the system has reached its boundaries
of operation. The constant C represents the offset term as introduced in Eq. 3.1.

3.2.2 Model evaluation

Subjects
Five able bodied subjects (age 32 + 13 years, 3 men) and five stroke subjects
(age 55 £ 18, 4 men) were included for this study. Table 3.1 summarizes the
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Table 3.1: Stroke subjects’ characteristics

Subject Age Sex Affected side Months post-stroke ARAT

S1 50 M L 44 52/57
2 61 M R 156 3/57
S3 69 M L 45 24/57
S4 68 M L 46 17/57
S5 26 F L 58 2/57

The maximal obtainable Action Research Arm test (ARAT) score is 57 points (normal movement).

characteristics for the individual stroke subjects. The study was in accordance with
the declaration of Helsinki and was approved by the local medical ethics committee.
All subjects gave written informed consent. During the experiments, the subjects
were asked to relax their muscles, in order to avoid voluntary muscle activation.

Experimental setup

Either the dominant arm (healthy subjects) or the affected arm (stroke subjects)
was strapped in a custom built device. This setup was used to fixate the wrist and
the hand in neutral pronosupination, and to measure the isometric thumb force in
two directions perpendicular to the axis of the thumb. Forces were measured by
two 45.3 N load cells (Futek, Irvine) preloaded with springs. See figure 3.1.

A special built 3 channel asynchronous biphasic electrical stimulator (TIC Medi-
zin, Dorsten, Germany) was used to apply the electrical stimulation pattern. Stim-
ulation was applied at a constant frequency (30 Hz) and pulse width (150 us). The
amplitude could be controlled via custom built controllers within the stimulator’s
range [0—30mA] in steps of 0.125mA. A single 50x50mm anode was used together
with 16x19mm cathodes for each channel. Electrodes with similar size showed good
results on both selectivity and comfort in a simulation study (Kuhn et al. 2010).

An EtherCAT 1/0 system (Beckhoff Automation GmbH, Verl, Germany) using
Matlab/xPC (The Mathworks, Nattick, USA) as EtherCAT master device was
used to control the stimulator parameters and to capture analog data from the
force sensors.

Experimental protocol
Preparation

The Abductor pollicis longus (AbPL), Opponens pollicis (OpP) and Flexor pol-
licis brevis (FPB) muscles were selected for stimulation. We expected to move
the thumb sufficiently in directions needed for grasp and release with these mus-
cles. OpP opposes the thumb (pre-grasp), FPB moves the thumb inward (grasp)
and AbPL moves the thumb up (release). Electrical stimulation was applied
(30HZ 150us) when electrodes were placed initially. The amplitude was increased
to evaluate responses and subject comfort. Electrodes were located at the motor
points based on exploration of the responses to electrical stimulation. See figure 3.2
for an example of electrode placement.
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Figure 3.2: Electrode placement. Example of placement of electrode on (top) AbPL and place-
ment of anode at the dorsum of the wrist and (bottom) above FPB muscle and OpP muscle. The
AbPL electrodes was placed just medial of the radial bone, approximately 5 cm proximal to the
wrist joint, the OpP electrode was placed laterally on the thenar, about 1/3 of the length of the
first metacarpal bone, measured from the proximal side. The FPB electrode was placed at about
half the length of the first metacarpal bone on the medial side of the thenar. Exact electrode
locations were determined experimentally based on observed responses and subject comfort.
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Force vector map determination

The subject specific force map (see figure 3.1 for an example) was determined in
the isometric setup, with the thumb visually positioned at 30 degrees of abduction
and 30 degrees of extension. The threshold and maximal stimulation amplitude
for each muscle were determined first: we stimulated (30Hz 150us) each muscle
individually for 1 second, followed by 0.5 second without stimulation. Every 1.5
second the amplitude was increased by 1ImA. When either a saturation in the
force response was observed or the subject reported unpleasant discomfort, the
stimulation was stopped.

The range between the threshold minus 1mA and the maximal amplitude was
divided in ten equidistant stimulation levels for each muscle. We applied these
30 stimulations (10 amplitudes per muscle) randomly and measured the exerted
thumb forces.

From this initialization measurement, we determined the force direction of each
individual muscle and the recruitment curve relating muscle stimulation to exerted
force. The recruitment curves were described with a sigmoidal function having three
parameters, using Eq. 3.1. Parameter values were obtained with a least-squares fit,
using the Levenberg-Marquardt algorithm (Seber and Wild 2003). See figure 3.1
for an example of muscle recruitment curves and force directions. This force vector
map indicates the ability to control the thumb force in different directions for a
specific subject.

Individual muscle controllers
After determination of the force vector maps, the feedback controller gains were
determined. Initial gains were obtained from an open loop step response procedure
developed by Ziegler and Nichols (1942). The step response reference pattern had
the following sequence: [0.5 0.8 0.5 0.2 0.5]|Fax|- The reference was held constant
for three seconds at each specific level. Thus, excluding the steps at begin and end,
this resulted in four step responses in total (two positive and two negative steps
of step size 0.3|Fmax|). The signs of the negative step responses were inverted and
then the average of all four step responses was used to determine the open loop
gain, Ko.

KXo T 57

My Tdead

In Eq. 3.7 the open loop gain, Ko, is calculated from the normalized input
magnitude, Xp, the measured steady state output magnitude, My, the time until
the output responds, Tgead and the time between the first response and the output
reaching the steady state, 7. As suggested by Ziegler and Nichols (1942), the
proportional gain, K¢, for each muscle was calculated as 90% of the open loop gain
and the integration time for the Pl-controller, T;, was set as 3.3 times Tyeaq-

For every muscle and subject the inverse of the recruitment curve compensates
the non-linear and subject and muscle specific recruitment. In this way the non-
linear elements and maximal force levels are compensated within the control loop
leading to a linear feedback controller between observed force error and reference
force. Furthermore it is expected that range of control gains between the different
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muscles and different subjects is relatively small, since the muscle and subject
specific recruitment curve transforms the outputs of the Pl controllers (forces) into
the required stimulation amplitudes.

After determining the initial gains for each muscle, in total four single muscle
tests were done for each muscle to be able to analyze performances of the individ-
ual muscle controllers: 1) step response reference pattern with feedback control,
2) 0.5 Hz sinusoidal reference pattern with feedback controller, 3) step response
reference pattern with a combination of feedforward and feedback control, and 4)
0.5 Hz sinusoidal reference pattern with a combination of feedforward and feedback
control.

When oscillatory behavior was observed during the first test, the proportional
gain was lowered systematically and the test was repeated until good tracking of the
reference was observed without severe oscillations. In some cases the integration
time T; was increased slightly for further fine tuning.

3.2.3 2D thumb force targets

For evaluation of the 2D controllers, 5 second constant reference force targets were
used. The targets were set at 0.5 N and 1.0 N in different directions within the
workspace of the subject. Initially, directions were chosen at —90°, —60°, —30°,
0°, 30° and 60°. Angles outside the theoretical workspace of the subject were
not measured. When less than four target directions were theoretically feasible,
intermediate angles (15° step size) were also evaluated.

Feedforward thumb force control

The applicability of the thumb force model was evaluated first in an experiment
based on feed forward control of the three muscles. In this experiment control
was based on the measured muscle parameters and the thumb model described in
Eq. 3.2. Based on the previously determined force map, target angles greater than
the angle of the long abductor muscle or smaller. The experiment was repeated
three times to explore the reproducibility of the methods. The target sequence was
the same in each repetition. The sharing of the load was calculated by implementing
Eq. 3.5 in a real-time quadratic programming (QP) problem solver using the online
active set strategy (Ferreau et al. 2008).

Feedforward and Feedback thumb force control

Control performance might be improved by adding error feedback. This was evalu-
ated in a second set of control trials in which the feed forward control was extended
with feedback error compensation. Force targets were the same as in the feed for-
ward control experiments. The error vector between the reference force vector and
the actual force vector was used as reference input for a second QP optimizer,
which distributed the force error over the individual muscles. Note that due to
feed forward muscle activation, forces can also be feedback controlled in the nega-
tive direction of the individual muscle axis. The calculated individual muscle force
errors were fed back with the individual muscle controllers. A schematic overview
of feedforward and feedback control paths is shown in figure 3.3.
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Figure 3.3: Block diagram of feedforward and feedback thumb force controller. Stimulation for three individual muscles is calculated based on a reference
force. Force distribution over the muscles is calculated by solving a QP problem as shown in 3.5 indicated by the 'QP’ blocks. These QP solvers take the
previously determined force map and also boundaries on the recruitment into account. For clarity this is left out in the schematic. The bounds for the
feedforward QP problem are [0,1]. The bounds for the feedback QP problem depend on the current activation of the muscle (from both feedforward and
feedback path) and indicate the remainder of the operating range ([0,1]) and can thus also be negative when the specific muscle is already active. In the
feedback path a Pl controller was used for each individual muscle force. When using a combination of feedforward and feedback control, the feedforward
path was reduced by a factor K = 0.8 to prevent overshoot and let the feedback path compensate for the remainder. When evaluating the feedforward
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Performance analysis

RMS errors were calculated from the magnitude of the error vector between mea-
sured muscle force during the initialisation procedure and muscle force estimate
based on the obtained parameters. In addition, the area of the theoretical work
range resulting from the muscle force vectors obtained during the first initialization
procedure was calculated and compared between subjects.

An important factor for the controllability is the rate of force change relative
to the change of stimulation amplitude for a given muscle. This factor can be
expressed by the maximal slope of the recruitment curve, calculated from the
derivative of Eq. 3.1, for a give muscle, i:

_ P
sl Opemax, = 4pgi (3-8)

At the end of the session, we repeated the initialization procedure to check
for possible changes in recruitment properties. In each repetition the sequence
of applied amplitudes and selected muscles was kept the same. Time between
subsequent initialization procedures was approximately 45 minutes. We estimated
the correlation coefficients (Spearman’s p) between the measured forces and the
forces predicted by the initially obtained model for each subjects. This gives an
indication of both the prediction ability of the model and the repeatability of the
method. To estimate effects of muscle fatigue we compared the force magnitudes
in both initialization procedures and calculated the least squares slope, m, for each
subject by:

m— > |Fprel[Fpos| 3.9
- 2 ( . )

3 [Fore|

In which Fpre and Fpog, are the observed forces during the procedures at the
beginning and the end of the session, respectively. The forces are summed over all
applied input amplitudes during the initialization procedure. The slope, m, is an
estimate of the ratio between initial force generation and final force generation for
a given muscle.

Single muscle control performances were evaluated based on the sine tracking
tasks. RMS errors between the actual and reference forces were calculated. The
2D controller performances were evaluated based on the stationary error of the
responses. This stationary error was defined as the average magnitude of the
force error vector during the last 10 percent of the in total 5 seconds lasting step
response.

Due to the relatively small sample size, non-parametric statistics was applied.
We used Mann Whitney U tests to statistically evaluate improvement with feedback
control over feedforward control only and also to evaluate performance in stroke
subjects with respect to healthy subjects.
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3.3 Results

3.3.1 Force vector maps

Results of the initialization procedures for all subjects and all repetitions are sum-
marized in figure 3.4. Figure 3.5 shows the distribution of theoretical workspace
area based on the determined muscle force maps for healthy subjects and stroke
subjects. The workspace area was larger in healthy subjects, compared to stroke
subjects: p=0.06 and p=0.02 for first and second initialization procedure respec-
tively. RMS errors for the predicted force vectors were 0.10+0.02N, 0.17+0.09N
and 0.194+0.11 N on average for the healthy subjects for AbPL, OpP and FPB,
respectively. For the stroke subjects, the RMS errors were 0.66+0.12 N and
0.794+0.26 N for OpP and FPB, respectively. The AbPL muscle was only ac-
tivated in S4 and S5, RMS errors were 0.14 N and 0.26 N for these subjects
respectively. Maximal slopes of the recruitment curves in healthy subjects were
0.184+0.06 N/A, 0.17+0.06 N/A and 0.70+0.52 N/A for AbPL, OpP and FPB
respectively. For the stroke subjects the maximal slopes were 0.09+0.06 N/A and
0.69+0.43N/A for OpP and FPB respectively. The maximal slopes for the AbPL
in subjects S4 and S5 were 0.07 N/A and 0.06 N/A respectively.

Correlations coefficients between predicted and measured forces are shown in
table 3.2 for both initialization procedures. The estimated force generation ratio’s
between first and second initialization procedure in healthy subjects were 0.87+
0.25, 0.934+0.10 and 0.97+ 0.06 for AbPL, OpP and FPB respectively. For the
stroke subjects the ratio’s were estimated at 0.14+40.09 and 0.31+0.14 for OpP
and FPB, respectively. For the AbPL muscle, the ratio’s were 0.35 and 0.29 for
subjects S4 and S5 respectively.

3.3.2 Force controller evaluation

Single muscle controllers

The averaged proportional gain over all healthy subjects was 0.22+0.28. For
the stroke subjects the average proportional gain was 1.044 1.16, note that these
values are dimensionless as the feedback controller has a force both as input and
as output, since the inverse recruitment is placed after the controller. The average
integral times were 0.56+ 0.12s and 0.624 0.45s for healthy subjects and stroke
subjects respectively.

During the single muscle control experiments, some saturation effects (stim-
ulation reaching predetermined maximal amplitude) were observed, leading to a
non-linear feedback system. Disregarding the cases were this saturation occurred,
the estimated controller gains were 0.17+0.12 and 0.57+0.12s on average for all
subjects for proportional gain and integral time respectively.

Results of the sine tracking experiments for the individual muscle feedback
controllers are shown in figure 3.6. Results for healthy subjects and stroke subjects
are shown separately. RMS tracking errors for the healthy subjects were 0.30+0.07
N, 0.294+0.06 N and 0.50+0.25 N for AbPL, OpP and FPB respectively. For
the stroke subjects, RMS errors were similar: 0.31+0.03 N, 0.37+0.10 N and
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Figure 3.4: Force vector map determination. Force map data in subsequent force map measurements ('Start’ and 'End’ of experiment) for all (H)ealthy
Grey arrows indicate maximal force for each muscle, obtained from the initialization procedure and the average

subjects and all (S)troke subjects.
movement direction. Axes were omitted for clarity, however the axes scaling was the same in all sub figures.
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Table 3.2: Force prediction

Healthy subjects

Stroke subjects

Muscle Procedure Fyx correlation Fy correlation Fx correlation Fy correlation
AbPL initial 0.72+0.19 083+0.11 095+0.02 039+0.09
final 0.61+£0.22 077+0.14 084+0.22 —0.44+0.79
OpP initial 0.80+£0.13 073+0.31 051+0.56 0.79+0.09
P final 0.73+£0.14 063+0.33 058+0.28 069+0.32
FPB initial 0.884+0.06 092+0.06 047+0.20 082+0.24
final 0.86+0.05 087+0.10 059+0.27 078+0.27

Correlations between predicted forces and measured forces during initialization procedures at start (initial) and end (final) of session
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Figure 3.5: Workspace areas. Boxplots of theoretical workspace area for healthy subjects and
stroke subjects. Workspaces calculated based on determined maximal muscle forces and muscle
directions during the first initialization (Start) and the second initialization procedure (End)

0.524+0.22 N for AbPL, OpP and FPB respectively. For subjects S1, S2 and
S3 the AbPL muscle could not be targeted properly, therefore the AbPL tracking
measurements were skipped for these subjects.

Combined muscle controllers

2D step responses for the best (H5) and worst (H1) healthy subject and best (S4)
and worst (S2) stroke subject are shown in figure 3.7. Time series of stepresponses
to a single 0.5 N target and a single 1.0 N target for H5 and S4 are shown in
figure 3.8. Responses over all subject are summarized in bar plots of stationary
errors, shown in figure 3.9. The stationary errors were averaged over all targets
within a group. Results were grouped by control type, target magnitude and subject
type. With feedback enabled, reduction in stationary errors was observed for the
stroke subjects for the 0.5 N targets (p<0.1). Feedforward performance was less
in stroke subjects, compared to the healthy subjects (p=0.05 and p<0.01 for the
0.5 N and 1.0 N targets respectively). The stationary errors were larger for the
0.5 N targets compared to the 1.0 N targets when normalized to the target forces
(p<0.01) with feedforward control in healthy subjects. No significant differences
in stationary errors were observed between the two target levels for the stroke
subjects.

3.4 Discussion

We showed the possibility to describe responses to electrical stimulation of indi-
vidual thumb muscles as a force vector map with a single activation direction and
a sigmoidal recruitment curve. As expected the variability between subjects is rel-
atively large (figure 3.4) due to anatomical differences. As a result, force maps
always need to be determined for each individual subject. Within subject the re-
sults are repeatable, demonstrating the feasibility of our approach (figure 3.4 and
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Figure 3.6: Individual muscle control. Sine (0.5 Hz) tracking results averaged over all healthy subjects (left) and over all stroke subjects (right). Results
shown for the three selected muscles: Abductor Pollicis Longus (AbPL), Opponens Pollicis (OpP) and Flexor Pollicis Brevis (FPB) and for feedback
control only. The mean over all subjects is shown by the solid line, shaded areas indicate the standard deviation. For AbPL only data for S4 and S5 is
shown in (b), as in the other stroke subjects this muscle could not be activated.
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Figure 3.7: 2D force control. Example of responses to the target set points for the best (H5; top-
left) and the worst (H1; bottom-left) healthy subject and for the best (54, top-right) and worst
(52; bottom-right) stroke subject. Top panes of each figure show results of solely feedforward
control; bottom panes show results for feedforward and feedback control. 0.5 N targets (left)
and 1.0 N targets (right) are shown separately for readability. The colored dotted lines show
the measured force response to a target set point shown by the same colored circle in the plane
perpendicular to the thumb. For every 100ms in the response a dot was plotted to give an
indication of the speed of the force response.
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(right). Top panes of each figure show forces in X direction; bottom panes show forces in Y direction.
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Figure 3.9: Stationary errors in 2D force control. Box plots of stationary errors in 2D force control trials. 0.5 N and 1.0 N targets are shown separately
for feedforward control only and the combination feedforward and feedback control and for healthy subjects and stroke subjects. Numbers above the
individual box plots indicate the total number of evaluated targets in that group, which was influenced by the workspace area of the individual subjects.
Significant differences between groups were calculated by the non-parametric Mann-Whitney U test and indicated by asterisks.
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table 3.2). Note that for subsequent sessions it is required to redo the initializa-
tion, since the response is highly dependent on exact electrode position (Chapter
2). However, in stroke subjects the AbPL muscle was difficult to target. In the
subjects in which we were able to target the muscle initially, the responses during
the second initialization procedure differed greatly from the initial procedure as in-
dicated by the low correlation coefficients in table 3.2 and in figure 3.4. Therefore
the AbPL muscle seems less reliable for use in 2D force control tasks compared to
the other muscles.

The load sharing approach resulted in the muscle being pulled nicely towards
the target force by the feedback controller. Since the error vector was used as input
for the feedback load sharing, the appropriate ratio of muscle activations was cal-
culated to generate force in the right direction. To our knowledge this load sharing
approach is a novel application in electrically stimulated muscle. In our opinion
this could be an appropriate solution to solve redundancy problems in activation of
multi-dimensional musculoskeletal systems with FES and simultaneously take the
boundaries of the individual force sources into account. The variation of controller
gains over different muscles and different subjects was low, which gives the pos-
sibility to use fixed values for these parameters when applying the methodology
presented here. Either as a true fixed value of as a starting point for further fine
tuning instead of the methods suggested by Ziegler and Nichols (1942) which were
currently used. Thereby further reducing the tunable parameters and setup time.

Performance of the 2D feedforward force controller was worse for the stroke
subjects compared to the healthy subjects. For the stroke subjects, adding feed-
back terms reduced stationary errors. For the healthy subjects the differences be-
tween feedforward control only and combined with feedback control were small, see
figure 3.9. However, depending on the model accuracy of the individual muscle’s
input-output relation, the feedback controller also reduced the control performance
in certain cases. An example of this can be observed from figure 3.7 where the
feedback controller negatively influences the force direction for the 0.5 N targets.
This is likely a result of a mismatch in the FPB model, causing the thumb being
pulled in a more negative direction than needed. Therefore we recommend esti-
mating model accuracy before starting the control trials, and redo the initialization
if necessary.

3.4.1 Limitations

We measured forces in two directions in a plane perpendicular to the thumb. There-
fore we neglected the forces perpendicular to this plane. Due to this fact we might
have made some errors in absolute force recordings. However, since we are using the
same setup in both model identification and control, we expect that the influence
of these non-measured forces on our performance observations are minimal.
Forces in unmeasured direction could have led to the relatively low observed
forces compared to other studies (Lujan and Crago 2009). However, we expect
that these unmeasured forces were small. The stimulated muscles are responsible
for thumb movement Therefore the force component in line with the thumb will be
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small compared to the perpendicular force components. A more likely cause is the
fact that we aimed at selective activation with small electrodes leading to relatively
low current densities and low muscle activation. Even though the observed forces
and the evaluated targets of 0.5 N and 1.0 N are relatively low, they are sufficient for
positioning the thumb for functional grasping of objects compared to the evaluated
force levels during grasping in (Flanagan et al. 1999; Singh et al. 2013). Recently,
we have shown applicability of a similar approach during grasp and release of objects
(Westerveld et al. 2012).

In all subjects, the FPB muscle showed a steep recruitment curve: when the
stimulation came above threshold force increase was high for an increase in stimula-
tion amplitude. This will have resulted in a bigger influence of FPB modeling errors
on the output force errors. The steeper recruitment compared to other muscles is
likely a result from differences in neural innervation. The FPB muscle is innervated
from the recurrent branch of the median nerve which is very superficial before en-
tering the FPB muscle. The OpP muscle is innervated by the same nerve branch,
but laterally the branch runs less superficial (Kozin 1998). The AbPL muscle is
innervated by the posterior interosseus nerve which is also less superficial.

We reduced the experiment length by only testing specific points along the
recruitment curve during the initialization phase. We did not specifically optimize
this method of recruitment curve sampling. However, the results in pilot mea-
surements where we compared our current approach with more dense sampling of
the muscle recruitment resulted in only minor differences between the obtained
recruitment curves. Recently, Schearer et al. (2012) compared different methods
of recruitment curve sampling extensively. Application of methods described there
might further improve the accuracy of the obtained recruitment curves of individual
muscles, which then could also improve the accuracy of the controllers.

The stroke subjects showed smaller workspaces compared to the healthy sub-
jects (figure 3.5). This is likely a result of non-use after stroke, which could have
been overcome partially by additional muscle training prior to the experiment.
However, since we only analyzed performance from the trials where the target
force vector was within the theoretical workspace, this has not affected our current
findings.

The ARAT scores of the stroke subjects had a broad range. Therefore the
subjects cannot be considered as a homogeneous group. However, the emphasizes
of the current approach lies on modeling subject specific recruitment relations.
Therefore we did not observe lower stimulation responses related to lower ARAT
scores. Furthermore, this is supported by the fact that the subjects with the best
ARAT scores showed the smallest theoretical work range for the selected muscles.

3.4.2 Physiological aspects

We expect the remainder of the variation to have a physiological cause. The most
likely one is a non-linear additive relation between the individual muscle directions
and recruitments. We expect that the linear addition of individual force magnitudes
to predict the resulting force agnitude had the largest influence.

50



Control of thumb force using surface FES and muscle load sharing

3.4.3 Related work

Lujan and Crago (2009) were able to control the thumb forces in two directions
by using an artificial neural network. They also observed differences between the
measured force of combined muscle activation and the sum of the individual com-
ponents, which suggested a nonlinear additive relation. Lujan and Crago stimulated
different muscles (Extensor Pollicis Longus, Abductor Pollicis Brevis and Adduc-
tor Pollicis). The evoked forces in that study are about five times higher than
the forces which we found, possibly caused by higher stimulation frequencies (50
Hz compared to 30 Hz in our study) and the different set of stimulated muscles.
This makes a good comparison between results difficult. Lujan and Crago only
report 2D control RMS errors of one healthy subject and one spinal cord injured
(SCI) patient, having implanted electrodes. The RMS error of the SCI patient
was 0.89 N, which is very low compared to our results in stroke subjects when
relating to the achieved force range. However implanted electrodes are known to
produce higher muscle selectivity and more direct muscle activation, which makes
this comparison unfair. The healthy subject they presented showed an RMS error
of 2.65N, which is (taking the factor 5 into account) within the same range as the
stationary RMS errors we observed. However, we were able to obtain that similar
performance without training and optimizing an artificial neural network but with
a more transparent model consisting of only four parameters per muscle.

Schearer et al. (2012) recently published a single case study on controlling
multiple degrees of freedom (in the shoulder) in a SCI subject with implanted
electrodes using a feedforward controller. They also solved for redundancy by
using a quadratic program and showed initial RMS errors of 5.29 N. As shoulder
muscles are much stronger than thumb muscles, this value is again difficult to
compare with our results. Given the range of their target forces (—18 N to 4.5 N
in the X direction, —18 N to 225 N in the y direction and —9 N to O N in the z
direction) one could say that the performance of their controller was slightly better
than ours, which seems logical given the fact that the electrodes used by Schearer
and colleagues were implanted. Therefore their stimulation was likely to result in
more selective and accurate activation of individual muscles. In addition, Schearer
et al suggest to improve the performance by adding a feedback controller, which
is exactly what we did in the current study. We showed that adding the feedback
path can indeed improve performance when the feedforward model is not accurate
enough.

3.4.4 Clinical implications

This study is a framework for evaluating multi-dimensional control of joints with
electrical stimulation. To be clinically applicable in post-stroke rehabilitation, the
method needs several extensions. First of all, we currently addressed only thumb
muscles. For functional grasp and release training the finger muscles are of course
equally important. However, compared to the thumb, those joints do not have
the redundancy in actuation: mainly one extensor muscle and one superficial flexor
muscle. Therefore the current method could easily be extended to the fingers,
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which we also evaluated recently (Westerveld et al. 2012).

When using additional electrodes for (selective) finger flexion and extension, the
number of electrodes will increase quickly. Since, electrode placement is subject
dependent and can be time consuming, the time required for setup will also increase
rapidly. From a practical point of view, time can be gained with the application
of electrode arrays and an approach to automatically search for proper electrode
locations (MaleSevi¢ et al. 2012).

Finally, the relations between stimulation and movement and control of move-
ment for grasp and release are also important. However proper force control is
a fundamental prerequisite for proper control of movement. Therefore the cur-
rent study can be seen as an intermediate step towards an approach for assisting
grasp and release movements and next steps in our research will focus on directly
mapping muscle activation to evoked movements.

Stroke subjects showed a limited workspace in our study. Since they did not
have severe spasticity, it is likely that their muscle force have decreased dramatically
due to long time non-use after their stroke. Therefore, we expect that results in
more acute stroke subjects lie closer to those of the healthy subjects in the current
experiment. However, this needs further evaluation and likely a subject specific
approach will lead to the best results.

3.5 Conclusion

The aim of this study was to evaluate the possibility to predict thumb muscle
force responses to FES and to control thumb muscle force in 2D in both healthy
and stroke subjects. For a single muscle, the static relation between muscle force
and activation was described by a sigmoidal muscle recruitment curve and a single
direction of force. Subsequently, load sharing was used to combine the activation
of individual muscles to actively control thumb force in 2D.

From our results we can conclude that it is possible to describe the thumb
muscle responses to FES by a single force direction and a sigmoidal recruitment
curve. The large variations between subjects indicate that these force maps are
highly subject specific, likely due to anatomical differences, requiring an individual
approach. The relatively small variation within subjects demonstrates the feasibility
and time-invariance of our approach. Effects of muscle fatigue were observed,
especially in stroke patients, so the approach presented here is applicable mainly
for short sessions (up to 30 minutes).

To our knowledge this is the first study applying a load sharing paradigm in
controlling multiple muscles with surface FES in a multidimensional biomechanical
system. The load sharing approach controlled the thumb towards the target forces
in the 2D control experiments. With feedforward force control only, errors were
larger in stroke subjects, compared to healthy subjects. However, with added
feedback control, significant differences in control performance had disappeared.
Therefore the methodology for multi-dimensional feedback force control presented
here has potential applicability as part of post stroke rehabilitation techniques.
Especially when applied earlier after stroke and muscles are stronger.
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Chapter 4

Abstract
Surface functional electrical stimulation (FES) is commonly employed in the rehabilitation
of patients with impairments of upper limb motor control due to stroke. In general, a limited
number of stimulation electrodes is used mostly in open loop control only. We aim to extent
the presently available stimulation techniques to the use of a closed loop model predictive
control (MPC) allowing for the use of an extended number of electrodes to achieve selective
finger movements and precise position control over different grasp types.
The movements of thumb, index, middle and ring finger were controlled by an MPC algo-
rithm using an underlying state space model which was obtained in a preceding initialization
procedure. The system was validated in four healthy and three stroke subjects using setpoint
tracking and functional grasping tasks such as hand opening, cylindrical- and pinch-grip.
We show that the proposed system is able to track angular setpoints for each finger with
an error of 8.3°+ 2.9° and 6.7°+ 1.7° for stroke and healthy subjects respectively, and
successfully generate functional movements to grasp and release a variety of smaller and
bigger objects.
With the designed MPC approach, it is possible to assist functional and smooth grasping
movements for both stroke and healthy subjects. The approach is therefore highly suitable
for application in a functional training environment aimed at regaining hand function after

Kstroke.

)
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4.1 Introduction

Stroke is one of the leading causes of upper limb impairment in the western world. A
commonly affected area in the brain is the motor cortex resulting in an impairment
of upper and lower limb motor control contralateral to the affected hemisphere.
However especially the functioning of the hand is essential for the direct interaction
with our environment e.g. object manipulation, eating, drinking, walking, personal
hygiene and many other activities. An impairment of those functions represents a
major burden to those affected in performing activities of daily life (ADL).

To improve the quality of life after stroke, increasing efforts have been made
to extend the available methods for rehabilitation of the impaired neural pathways
with the goal of restoring as much as possible of the previously available motor
control. Methods which have actively been used in the neural rehabilitation of
stroke patients include neurodevelopmental techniques, proprioceptive neuromus-
cular facilitation, robot assisted therapy, biofeedback, mirror therapy, constrained
intensive movement therapy and electrical stimulation (DeLisa 1988).

This paper focuses on the use of functional electrical stimulation (FES) to ac-
tivate the peripheral motor system. Thereby afferent signals are evoked by the
electrical stimulus in addition to efferent signals which activate the muscles. Addi-
tionally to directly activating efferent and afferent axons, the resulting movement
evokes proprioceptive feedback that stems from Muscle-Spindles and Golgi Tendon
Organs. This represents an advantage of FES with respect to methods in which
the impaired extremities are only moved passively e.g. when moved manually by
a physiotherapist. During FES the muscles are actively involved in performing the
desired movement to a much higher degree compared to passive movements. This
in turn prevents muscular degeneration and aids a faster recovery of the central
nervous system (CNS) (DB Popovi¢ et al. 2009). Thereby several studies have
reported a positive, statistically significant effect of FES on motor relearning after
cerebrovascular accident (CVA) in the acute state and at least minor improvements
in a later subacute or chronic state (X Hu et al. 2010; Hara 2008; MK Chan et al.
2009; Shindo et al. 2011; Thrasher et al. 2008; DB Popovic et al. 2009).

Present commercially available surface FES systems that are used in the reha-
bilitation of grasping functions in stroke patients include the NESS Handmaster
(NESS Ltd., Ra'anana, Israel), the Bionic Glove (Prochazka et al. 1997) and the
Neuromove 900 (Biomation, Almonte, Ontario, Canada). However all of those
developments rely on simple feedforward procedures using only a small amount of
electrodes positioned on the forearm. These systems merely evoke simple functional
movements such as hand opening and closing without much room for selectivity.
This is predominantly related to the complex anatomical nature of the forearm
making it challenging to selectively target specific low level functions such as sin-
gle finger movements. Current research of our group is focusing on extending the
present techniques to more sophisticated stimulation procedures. This is achieved
by raising the number of electrodes to a total of nine which increases stimulation
flexibility to improve the possible training effect of such FES devices and simulta-
neously increase usability for home application (Westerveld et al. 2012).
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Table 4.1: List of all participating subjects.

Subject Sex Age Months since Stroke ARAT Affect. Side

M 26 n/a n/a n/a
F 21 n/a n/a n/a
Healthy F 22 n/a n/a n/a
M 58 n/a n/a n/a
M 60 147 3 R
Stoke 68 36 28 L
M 67 38 25 L

Similar work has been reported e.g. by Keller et. al. who developed a sur-
face FES system that was able to selectively produce finger and wrist forces under
isometric conditions based on a previously estimated Hammerstein model. This
approach also included a procedure for automatic recognition for the optimal stim-
ulation electrode positions and recursive model adaptation to compensate fatigue
(Keller et al. 2006). It however did not include the control of movement.

The present study aims to investigate the feasibility of a model predictive con-
trol algorithm (MPC) controlling individual finger movements and a corresponding
system model in order to extent the present techniques for functional electrical
stimulation in stroke patient rehabilitation. MPC can conveniently be used to con-
trol a multiple-input multiple-output (MIMO) system based on the supplied system
model. Also additional requirements such as control constraints, recursive model
updates due to changing system conditions or system nonlinearities can easily be
taken into account and adjusted within a short time period.

In addition to the use of a more complex control procedure, it is investigated
whether it is possible to profit from an increased number of stimulating electrodes.
This is likely to improve selectivity and therefore making it possible to achieve qual-
itatively better functional movements during training. Especially movement func-
tionality is important in this matter and represents the core goal of the technique
as the goal is to achieve movements for grasping and manipulation of objects. The
proposed system is hypothesized to be able to perform two different grasp types,
namely pinch and cylindrical grip, which is tested in both pure setpoint tracking
tasks, performed in air, and functional grasping experiments.

4.2 Methods

4.2.1 Subjects

Four healthy and three stroke subjects participated in the experimental study. All
participants signed an informed consent form and the protocol was approved by
the local medical ethical committee. Details of all subjects are provide in table 4.1.
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Figure 4.1: Overview of the stimulation system. a) Initialization procedure: the forearm was
stimulated by predefined amplitude patterns | while recording the resulting movements x. Subse-
quently the stimulation amplitudes | and finger angles were used for offline model estimation. b)
Feedback control system: The model predictive controller uses the current angular positions 0 as
well as the setpoint references B.s to calculate the optimal future stimulation amplitudes |. In
both, initialization and control, one stimulator was dedicated to controlling the thumb muscles
whereas the other stimulator controlled flexor and extensor muscles. Switching was controlled
by a predefined internal procedure: as needed for initialization (a) or during control, extensors
were selected for hand opening, flexors for any grasp type (b). In addition, during control the
maximum amplitude constraints of the inactive controller outputs were set to zero to ensure safe
operation.

4.2.2 Experimental Setup

Figure 4.1 shows a schematic overview of the overall experimental procedure. It is
based on the employment of two electrical stimulators, an optical motion capture
system and the model predictive controller which is embedded on an xPc real-time
platform. Both electrical stimulators were able to supply three independent current
controlled channels for stimulation of the forearm. A more detailed description of
these components is given in the subsequent sections.

The entire procedure consists of initialization period during which the forearm
were stimulated by predefined amplitude patterns I, while recording the resulting
movements x. Subsequently the stimulation amplitudes | and finger angles were
used for offline model estimation. Secondly the the model predictive controller uses
the current angular positions 8 as well as the setpoint references B¢ to calculate
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Figure 4.2: lllustration of the arm rest. The elbow as well as the wrist are rested on padded
ground whereby most of the forearm is left free of support to improve accessibility for electrode
attachment. The wrist is held in place in between a fixed vertical plate as well as padded straps
to prevent transverse and rotational movement.

the optimal future stimulation amplitudes .

To extend the number of individual channels, given by the two electrical stim-
ulators one stimulator was dedicated to controlling the thumb muscles whereas
the other stimulator controlled flexor and extensor muscles, switching between
extensor- and flexor- electrodes according to the task (hand movement) or when
needed during initialization. Additionally, during MPC control the maximum am-
plitude constraints of the corresponding controller outputs were set to zero to
deactivate the unused outputs and ensure safe operation. Both was handled by a
central control unit, which employed predefined rules according to which extensors
or flexors outputs were selected for hand opening or closing, as well as setting the
appropriate maximum amplitudes.

To constrain the movement of arm and hand, or place the hand in the cor-
rect position during the experiment, the arm was fixated in a constraining device,
mounted to an ordinary desk chair (figure 4.2). In case of the subjects’ inability
to keep the hand in a pronated position, the forearm could be fixated to a vertical
plate using padded straps. This however did not limit wrist or hand movement in
any way.

4.2.3 Electrical Stimulation

Hardware
Two custom build stimulators (TIC Medizin, Dorsten, Germany), equipped with an
overall of 6 individual physical channels for which the amplitude could be modulated
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(b)

Figure 4.3: Pictures of forearm with electrodes attached. All electrodes are marked with numbers
corresponding to the description in table 4.2.

individually. The two stimulators were capable of stimulating with a pulsewidth of
80us to 300us (incr. of 10us), amplitudes of OmA to 60mA (incr. of 1mA),
frequencies ranging from 2Hz to 100Hz (incr. of 1Hz) with amplitude ramp up
times of 0 sec to 10 sec (incr. of 0.1 sec). Three channels were designated to
target the thumb muscles and the remaining three channels stimulated flexors and
extensor muscles. To achieve an overall of 9 possible stimulating channels, flexor
and extensor electrodes were pairwise attached to the same channels and switched
back and forth for flexion and extension respectively. Pulsewidth and frequency
were equal on all channels and left constant. Stimulator pulses were biphasic
in order to prevent undesired accumulation of charge at the interface between
stimulation electrodes and tissue.

Electrode Placement

Self-adhesive electrodes were placed on the forearm, whereby a squared electrode of
5 cm was used as the anode and a rectangular electrode of 1.6x1.8 cm was used as
the cathode. The placement was conducted manually whereby the single electrodes
were positioned according to the scheme in figure 4.3 such that the activation of
each electrode could evoke movement with maximum selectivity. The term selec-
tivity was defined by maximizing the resulting desired movement of a single finger
while minimizing the movement of all other digits. This procedure was conducted
manually and controlled by visual inspection. Table 4.2 gives an overview of all
placed electrodes, their targeted muscle as well as the desired resulting movement.
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Table 4.2: Overview of all stimulating electrodes, their corresponding muscle and resulting move-
ment.

Electrode Muscle Desired Movement
1 EDC Index Extension
2 EDC Middle/Ring Extension
3 EDC Ring/Pinky Extension
4 FDS Index Flexion
5 FDS Middle Flexion
6 FDS Ring Flexion
7 AbPI Thumb Abduction
8 OpP Thumb Opposition
9 FPB Thumb Flexion
G - Ground

Figure 4.4: Marker positions on all fingers and the back of the hand, which determined the local
coordinate system used. Visible is furthermore the extension on the thumb which was included
in the setup to avoid marker occlusion during grasping.

4.2.4 Motion Capture and Marker placement

During operation the movement of the hand was recorded and fed back to the
MPC using an optical motion capture device (Visualeyez, PhoeniX Technologies
Incorporated, Burnaby, Canada) with a precision of 0.015mm at 1.2m distance
according to the provided datasheet. Figure 4.4 shows the marker placement on
the hand. The three markers on the back of the hand form a local reference
coordinate system according to which the angles of thumb, index, middle and ring
finger were determined. Each angle was calculated between the vector formed
by the two markers on each finger and the x-y plane on the back of the hand.
Negative angular movement was defined in direction of finger flexion. To increase
the visibility for the camera, the markers for the thumb were not placed directly
on the thumb, but were mounted on a small extension approximately 2 cm above
and parallel to the thumb. The placement of the markers is mainly due to visibility
reasons, as markers placed on the tip of the finger would have been prone to get
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out of camera sight as soon as the hand is closed which would have led to angle
miscalculations and therefore hamper the control procedure.

4.2.5 System Identification and Control

Preceding the control procedure, a model of the system was obtained, which was
subsequently used by the MPC to calculate the inputs needed to reach the de-
sired setpoints. This was achieved by stimulating the finger muscles using step
inputs, between zero and the predetermined electrode specific maximum stimula-
tion amplitudes, and recording the resulting movement response for a period of
approximately 8 minutes.

The obtained data was preprocessed by subtracting the mean offsets, low pass
filtering and piecewise detrending to remove nonlinear offsets and high frequency
noise components. During detrending, interpolation points were given by the times
at which all input signals were zero and therefore any deviation from zero level was
attributed to low frequency noise. Subsequently a piecewise linear interpolation
between the consecutive data points was subtracted from the signal and the signal
was downsampled to 10Hz.

Subsequently the model calculations were performed using Matlab's System
Identification Toolbox (The MathWorks Inc., Natick, MA USA). In the present
case, the system was described by a 9 input — 5 output linear state space model
of order 15. The model order was determined beforehand by trial and error as well
as residual analysis, such that a further increase would not decrease the model
residuals to a greater extent and was used constant throughout all experiments.

The MPC, which was implemented using Matlab’s Model Predictive Control
Toolbox (The MathWorks Inc., Natick, MA USA), operated at a rate of 10Hz,
which was restricted by the hardware speed of the real-time computer in use,
minimizing the general MPC objective function J (Bemporad et al. 2010) that, in
this particular case, can be reduced to the following form:

J(Auj,g) =
-1 ny Nu
pzi(Z|w,yj(yj(|<+i+1||<) —ri(ki+ )P+ S WA (K+i[K)]?) + pee?
i=1 j=1 =1

(4.1)

J is minimized with respect to Au(K|K),...,Au(m— 14 k|k),e and describes
the cost function over the control horizon p to find the appropriate stimulation
amplitudes uj for all inputs ny such that the angles y; for the number of all outputs
Ny reach the desired setpoints rj. In order to avoid unpleasant or harmful control
behavior the inputs uj and input rates Auj are constrained variables with Ujmin =0
and Ujmax set to the maximum stimulation amplitude of the equivalent electrode
which were determined manually before each experiment, and 0 < Aujmin < 1 which
is equivalent to a maximum change of amplitude of 1mA per control step (100ms).
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Control and prediction horizons were set to 0.5s and 0.6s respectively. Input
rate weight WJ-Au and output weight WyJ assign the relative importance of input rate

constraints Auj and setpoint error. Thereby WjAu =0.1forall jandw =[11122".
As the thumb does have a smaller angular movement range, its output weights
were set twice as high as for the rest of the fingers in order to aid more accurate
setpoint tracking. To add stability to the stimulation behavior and increase subject
comfort the overall estimation gain was decreased to 0.4, which is a dimensionless
internal variable in the generated MPC object. All remaining settings were left
unaltered. The weight ps penalizes the violation of constraints which is measured
by the slack variable €. As p¢ increases relative to the input and output weights, the
controller gives higher priority to minimization of constraint violations. Either flexor
or extensor control variable outputs (due to the distribution of electrodes across
the channels) were made inactive by setting their maximum value constraint to
zero, depending on the desired movement. Additionally, internal- and closed-loop
controller stability were ensured and tested by calculating the eigenvalues of the
controllers unconstrained state space realization and the discrete-time state-space-
realization of the closed-loop system. Furthermore, stability of the system model
was tested via examination of its step responses. For a thorough documentation
of the implemented MPC structure and stability analysis techniques please refer to
(Bemporad et al. 2010).

4.2.6 Experimental Protocol

Electrode Attachment and Model Initialization

Throughout the experiment the subject was seated in a chair with the affected hand
resting on the hand-rest in a neutral pro/supinated position as e.g. when holding
a bottle or cup (figure 4.2). Depending on the subjects own ability to supinate the
hand, the wrist was fixated using padded straps. Subsequently all 9 electrodes were
placed manually according to figure 4.3 whereby correct placement was confirmed
matching it to the desired responses in table 4.2. Throughout the experiment the
stimulation amplitude was restricted to a range of OmA to 30mA, therefore during
this time also an appropriate stimulation pulse width was determined at which
the stimulation showed significant movement responses within a range of OmA to
15mA. This was merely a preparational step adjusting stimulation intensity and was
only changed in case of too little movement response or selectivity in the operating
range. Furthermore the stimulation frequency was fixed at 30Hz.

An additional placement criterion was subject comfort, whereby it was assured
that the subject’s sensation caused by the stimulation was not painful or uncomfort-
able. As soon as the electrode placement was completed, maximum current am-
plitudes were determined for each electrode. The maximum amplitude was defined
by the amplitude at which any further increase would not lead to any significant
change in the desired movement response and did not cause any uncomfortable
sensation to the subjects. In cases where further increasing the amplitude led to
an unwanted decrease of selectivity the maximum amplitude was set in favor of
maintaining selectivity.
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Evaluation

In order to assess controller performance in terms of setpoint tracking as well as its
ability to achieve functional movements, the controller was set to perform several
setpoint tracking tasks in air as well as to grasp a number of objects. The setpoint
error is subsequently determined by the root mean squared error of steady state
finger setpoint angles and the resulting controlled finger angles.

The four objects with which the ability of grasping and holding was determined
were selected from the ARA-test. These were a small cube (2.5cm, 10g), a larger
cube (5cm, 90g) as well as a hollow metal cylinder (© 2x15.5cm, 100g) and a
marble (@ 1.7cm, 5g). The objects were manually placed between the subjects’
fingers by the experimenter after which the controller was instructed to grasp the
object using either pinch grip for the marble and the small cube, or cyclindrical grip
for the large cube and the cylinder. For pinch grip the object was placed in between
index and ring finger or in some cases where selective index finger movement could
not be achieved, between thumb and middle finger. Success was determined by
holding the object for a period of 10 seconds which was repeated five times for
each object.

In terms of setpoint tracking, the controllers” ability for tracking a total of
3 setpoints was assessed. These setpoints were predefined movement patterns
corresponding to the functional movement types: pinch grip, cylindrical grip and
opening of the hand. Thereby the setpoint tracking was divided into two separate
phases: alternating 10 times between 1) hand opening and cylindrical grip as
well as 2) hand opening and pinch grip. Each setpoint was held for a period of
approximately 10 seconds. Subsequently the measured finger trajectories of all 10
repetitions were lined up to the setpoint change and averaged calculating mean and
variance for each timestamp on an interval of -1s to 6s with zero being the change
from hand opening to the corresponding setpoint (cylindrical or pinch grip).

4.2.7 Data Analysis

Evaluation of Stimulation Selectivity
To determine stimulation quality a new measure for selectivity was introduced.
Thereby the selectivity index per electrode is expressed by

&:var(NLv'i)*NF (4.2)
2i—1Mef

The selectivity Sof each electrode eis given by the maximum response matrix M
(with Ne rows and Ng columns) of each digit f to stimulation on this electrode times
the number of controlled fingers Nr. Thereby Nr is used as a scaling factor. The
intensities were normalized to the sum of their corresponding row which represents
the overall response to the stimulus per electrode. In other words, the selectivity
of one electrode is the variance of the movements of all fingers evoked by this
electrode, normalized by the total movement and multiplied by the scaling factor
Ne.
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Table 4.3: Results of the system identification procedure using the initialization data. Shown are
the mean model fits (eq.4.3) of the estimated state space model for each angular system output.

Healthy [%] Stroke [%]
mean sd mean sd
Thumb Ext. 56 8.3 55 7.5
Thumb Abd. 67 6.3 74 49
Index 68 5.9 51 9.0
Middle 66 12.1 63 6.4
Ring 64 8.8 60 11.2
mean 64 8.3 60 7.5

The hereby used selectivity index is motivated by its practical properties such
that in case all resulting movements are equal in amplitude, which corresponds to
no selectivity, Sis equal to zero. In case selectivity is highest and only one output is
activated entirely while leaving all others at zero, Sequals one. As thumb extension
and abduction are not independent of each other the Euclidean norm was used in
order to combine them and obtain a more meaningful, overall activation measure
for comparison.

Model and Controller Evaluation

The accuracy of a model output ¥ to the previously recorded observed data y with
a number of samples N is estimated by the following formula which expresses the
similarity of the calculated model outputs to the measured data (Ljung 2013).
Thereby ¥ and y are vectors of length N.

fit — (1—%)*100 (4.3)
y- 25|

To assess the controller’s potential to be used for performing functional move-
ments, it was set to track the same setpoints as when performing the setpoint
tracking task. However this time a number of objects were manually placed in the
subject’s hand for which setpoints did not depend on the size of the object. A
successful grasp was indicated by the controller's ability to hold and release the
object for a period of 10 seconds. Thereby the process was repeated 5 times for
each object. A single attempt of grasping was awarded with either 1 for success or
0 for failure. In the following the success rate is defined to be the mean of all trial
outcomes. To counteract voluntary interference, subjects with much residual hand
control e.g. all healthy subjects were blindfolded and instructed to remain relaxed
throughout the procedure.
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Figure 4.5: Maximum response matrix M, with intensities normalized to the sum of their corre-
sponding row as in 4.2, of all targeted fingers to stimulation on all nine electrodes (rows 1-9)
for healthy (a) and stroke subjects (b). Additionally the index of selectivity is given for each
stimulating electrode, whereby in case the selectivity S = 1 is equivalent to a response of only
1 finger to the stimulus indicating maximum selectivity. Whereas an S = 0 indicates an evenly
distributed response of all fingers. Electrode targets are equivalent to table 4.2.

4.3 Results

4.3.1 |Initialization and System Identification

During model initialization movement on all fingers could merely be elicited by
amplitudes near the maximum. This was especially the case for stroke subjects
whereas healthy subjects showed lower thresholds at approx. 50% max. amplitude.
Maximum amplitudes ranged from approx. 16 - 30mA for extensor- and 6 - 20mA
for flexor muscles. Pulsewidths ranged from 80 - 120 psec for healthy and 200 - 250
psec for stroke subjects. During operation a fast onset of diminishing movement
response was observed in all stroke subjects such that the pulsewidth was often
increased several times by an overall of 30 - 50 psec in order to counteract this
effects. With the thereafter obtained linear state space model, 10 step prediction
accuracies given by the model fit of approximately 60-70% were achieved. Table 4.3
shows the average model accuracies for each output, for stroke and healthy subjects
respectively. Furthermore, additional analysis and of the MPC objects and real time
performance revealed no issues in terms of controller or model stability.
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Figure 4.6: Averaged setpoint plot for an exemplary healthy subject with setpoints going from
hand opening to a) cylindrical grip and b) pinch grip. Thumb and residual fingers are separated
graphically for visibility. Mean variance over all fingers was 1.7°+ 0.25° for cylindrical and 3.1°+
2.25° for pinch grip.

4.3.2 Selectivity

Figure 4.5 shows the normalized maximum movement intensity after settling time
for each electrode and output. Comparing healthy to stroke subjects both groups
show similar selectivity distributions. However the excitation of individual finger
movements is degraded in the case of stroke subjects. Particularly it was hardly
possible to achieve selective index flexion (resp. to electr. 4 in 4.5b).

4.3.3 Setpoint Tracking

Figure 4.6 shows a typical example for setpoint responses averaged over several
trials and obtained for the cylindrical and pinch grip task of one healthy subject.
Thumb and finger data are shown separately to increase visibility. The setpoints
were tracked with good accuracy for all digits including the thumb. Time zero
represents the setpoint change from hand opening to closing. Figure 4.7 shows a
similar example for an exemplary stroke subject (ARAT=3). As the subject showed
a very limited movement range, the setpoints were adjusted accordingly. Tracking
of thumb position hereby showed large offsets in comparison to its movement range.
Figure 4.8 shows the average angular range for healthy and stroke subjects. The
movement range was defined as the maximum possible movement for each finger
or output dimension, elicited by electrical stimulation. Thereby stroke subjects had
a smaller movement range in comparison to healthy subjects. Steady state setpoint
errors for hand opening, cylindrical, and pinch grip averaged over all fingers of all
healthy and stroke subjects can be seen in figure 4.9. In addition to that the steady
state error normalized by movement range is shown on a second axis.

Figure 4.10 shows exemplary measured finger angles, angular setpoints includ-
ing all nine control variables (stimulation currents) and their maximum constraints
during a setpoint measurement in air, altering between hand opening and pinch
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Figure 4.7: Averaged setpoint plot of an exemplary stroke subject (ARAT = 3) executing cylin- 4
drical grip. Subject showed no residual hand control and a limited angular movement. Mean

variance over all fingers was 1.8°+ 0.013".
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Figure 4.8: Movement range for each finger, averaged over all stroke and healthy subjects.
Movement range was defined as the maximum possible movement of each finger elicited by
electrical stimulation.
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Figure 4.9: Mean steady state errors over all fingers including the thumb during setpoint tracking
averaged over all healthy and stroke subjects as well as the mean steady state errors normalized
by the movement range.

grip. Visible is also how the constraints of outputs 1-6 are altered to multiplex
between flexion and extension. All control variables are normalized by their max-
imum boundary constraint. As described previously, outputs 1-3 and 4-6 can not
be active at the same time. Note how all fingers follow their setpoints adequately.
Since the setpoints in this case are aiming for selective index flexion only output 4
and 5 are active during flexion. Hereby output 4 is selective for index flexion, and
therefore most active, whereas channel 5 is selective for flexion of the middle finger
and shows merely small activity, likely due to a mechanical coupling embedded in
the system model (figure 4.5a). Also, whereas all other outputs hardly come close
to their maximum amplitude constraints, output nr. 3 alternated between zero and
maximum amplitude. The reason for this might be that in this case the maximum
amplitude was set slightly too low. This way the maximum current was needed to
reach the desired setpoint. This is evident when regarding the setpoint of the ring
finger, that output 3 is selective for, which is able to reach the setpoint only with
a larger offset compared to other fingers.

Errors are divided evenly over all inputs and it was possible to perform the
pinch grip task in all healthy, but merely one stroke subject. On all remaining
stroke subjects selective stimulation for index flexion could not be achieved which
led to the exclusion of the pinch grip task in those cases.

Generally, both setpoint error and standard deviation is larger in stroke subjects
by a factor of about 1.25 and 1.65 respectively compared to the observations in
healthy subjects.

4.3.4 Functional Movements

Table 4.4 shows a comparison of the average success rates for grasping for healthy
and stroke subjects during electrical stimulation. Thereby the success rate in stroke
subjects was slightly lower for heavy or small objects such as the metal cylinder
and the marble. Big and small wooden cubes were grasped with 100 % success
rate.
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Figure 4.10: Exemplary measured finger angles, angular setpoints, as well as all nine control
variables and their maximum constraints during a setpoint measurement in air, altering between
hand opening and pinch grip. Note how the constraints of channels 1-6 are altered to multiplex
between flexion and extention. All control variables are normalized by their maximum boundary
constraint.
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Table 4.4: Success rate of grasping experiments in stroke and healthy subjects. The numbers
define the percentage of trials in which the object was held successfully.

Stroke Healthy
mean sd mean sd
Metal Cylinder 75% 21% 95% 1%
Marble 75% 5% 100% 0%
Big Cube 100% 0% 100% 0%
Small Cube 100% 0% 100% 0%

4.4 Discussion

In this paper we investigated the feasibility of a model predictive control approach
for the control of fine grasping movements in stroke patients. The aim of this
study was to passively generate functional movements to grasp and release objects
of different size and shape. We showed that the approach can produce functional
movements to grasp and release a variety of smaller and bigger objects (Table 4.4).
Performance in stroke subjects was slightly reduced, especially for small and heavy
objects.

Additionally, we showed that it is possible to obtain a system model to predict
finger movement with accuracies of approximately 60% to 70% which can be used
for control. Also it was shown possible to find the desired stimulation positions to
achieve selective flexion and extension movements of index, middle and ring finger
as well as the thumb in three different angular directions as shown in figure 4.5. The
average variability in setpoint tracking of 8.3°+ 2.9" and 6.7°+ 1.7° for stroke and
healthy subjects respectively did not have a big impact on movement functionality.

4.4.1 Related Work

In terms of movement control, the precise positioning of individual fingers to achieve
a functional movement with the possibility of conveniently implementing a variety
of other possible movements for patient training had not been demonstrated so far.
However, selective finger activation and feedback control of electrical stimulation
have been described thoroughly in literature.

The results regarding selectivity are similar to those obtained in chapter 2 of
this thesis, where the possibility to generate selective finger extension and thumb
movements by electrical stimulation using electrodes aligned on a grid was shown.
Existing control methods mainly focus on gross motor control of wrist and hand
(Crago et al. 1996; Hart et al. 1998; Micera et al. 2010). With the MPC approach
presented here assistance of fine motor control with selective finger stimulation
becomes available.

Current commercially available devices such as the Handmaster or the Neuro-
move lack variability in stimulation patterns, number of electrodes and available
independent channels. Therefore these devices are limited in their application which
could lead to insufficient training paradigms. Our current approach was shown able
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to control individual finger and hand movements accurately. This could possibly
lead to a better result for the neural recovery of fine motor control functions.

In other systems which make use of a greater number of input electrodes to
select the optimal electrode configuration this is implemented as a separate step
preceding training similar to the procedure described by us (O'Dwyer et al. 2006;
Keller et al. 2006; DB Popovi¢ and MB Popovi¢ 2009; Hoffmann et al. 2012; Elsaify
2005). Being able to use a system model, the MPC has an inherent electrode
selection procedure. Therefore even an initial incorrect electrode placement such
as switching electrode order does not have an impact on the robustness of the
procedure. Additionally this makes it possible to easily up-or downscale the amount
of inputs with minimal additional adjustment time and allows for a patient specific
approach.

4.4.2 Possibilities for rehabilitation

Three practical shortcomings of the current methods should be overcome before
an approach like this can be applied in post stroke rehabilitation: 1) donning
and doffing is cumbersome and time consuming, 2) the motion capture system is
only suitable for a laboratory setup and 3) the user remains passive in the current
approach. For rehabilitation purposes, the system should be quick and easy to
setup by a non-trained user, finger movement should be recorded with a simple
and easy to setup system and voluntary effort by the user should be promoted
to achieve a positive training effect (Wolbrecht et al. 2008; Reinkensmeyer et al.
2009; Timmermans et al. 2010).

A drawback of the method is the strong dependency on a large number of
stable electrodes on the forearm. We had placed an overall of nine electrodes
whereby three groups of three electrodes were dedicated to control thumb, flexors
and extensors respectively. Preceding the experiments, the electrode positions
were searched manually which was subjective, cumbersome and time consuming.
Therefore we suggest to replace the many single electrodes by electrode arrays.
This has been under development by a number of groups (Malesevi¢ et al. 2012;
DB Popovi¢ and MB Popovi¢ 2009; O'Dwyer et al. 2006; Hoffmann et al. 2012).
The manual search procedure could subsequently taken over by intelligent search
algorithms to increase usability especially decreasing the time needed for donning
and doffing.

The controller used constant position information which was captured by a
motion tracking device, mainly suitable for a laboratory environment. For clinical
application a more compact and more plug and play solution is needed. Measure-
ment gloves (Williams et al. 2000; Simone and Kamper 2005; Veltink et al. 2012;
Oess et al. 2012) or commercially available devices like Microsoft Kinect (Chang
et al. 2011) or LEAP motion (Weichert et al. 2013) might be used as a more
portable solution for feedback of finger angles.

The present system is preprogrammed strictly independent of subject intention.
For application in rehabilitation, feedback mechanisms to detect voluntary subject
activity is required be more effective and increase the possible recovery of motor
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function (Sinkjeer et al. 2003). This has already been done using e.g. EMG or
torque (Hara 2008; Besio 1997; Hincapie and Kirsch 2007; XL Hu et al. 2011;
Yamaguchi et al. 1999), but also systems driven by data derived from the cortex
using invasive or noninvasive methods are in development (Ethier et al. 2012;
Tavella et al. 2010; Schneiders et al. 2011; Pfurtscheller et al. 2005; Muller-Putz
et al. 2008).

4.4.3 Limitations

The success-rate in terms of selectivity, functional grasping and setpoint tracking
was lower in stroke subjects. Also the pulsewidth used in all stroke subjects was
about two times higher to result in a similar activation threshold compared to
healthy subjects. This could be attributed to the fact that all of them had already
entered the chronic phase which might have resulted in muscular degenerations or
other active or passive tissue dysfunctions (Carda et al. 2013). Two of the stroke
subjects showed signs of spasticity (ARAT = 28 and 25) and one showed a signif-
icant angular movement limitation (ARAT=3). In cases where spasms are present
with difficulties to keep the hand in an open/neutral position, the employment
of a passive orthosis such as the SaeboFlex system (Saebo Inc., Charlotte, NC,
USA) could be used. However, this might be less of an issue when the technique
is applied for rehabilitation of acute stroke patients. In that group, the controllers
performance is hypothesized to be more similar to that of a healthy subject as no
significant muscular degenerations, contractures or spasticity should have occurred
at this point in time (Carda et al. 2013; Brainin 2013).

As visible in table 4.1 the age difference between the recruited healthy and
stroke subjects was rather high. Therefore one should be cautious in the direct
comparison of both groups. Muscles in elderly could be weaker as in younger
subjects caused by muscular changes due to age. In addition to that, electrode
contact might be different in elderly due to a reduced skin smoothness. However,
inter-subject variability in terms of stimulation parameter tuning is always present.
The procedure is able to overcome such changes by e.g. increasing stimulation
intensity. Therefore we do not expect that differences in age have influenced the
outcome of this study to a large extent.

Voluntary subject interference, especially during the conducted object grasping
task cannot be excluded with absolute certainty. Despite the fact that all healthy
subjects were blindfolded and instructed to remain relaxed, the possibility of subject
interference remains. Future work could incorporate EMG measurements, together
with methods to subtract the stimulation artefacts (Sennels et al. 1997; Langzam
et al. 2006) to ensure that the subject is truly passive.

All controllers showed to be both closed-loop and internally stable, which is
essential to ensure safe performance. However mismatch between the model and
the biological system can still lead to unstable situations. This could be avoided
by tuning the controllers to behave less aggressive which decreases oscillation and
subject discomfort and therefore add stability, but this will also hamper setpoint
tracking results.
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The initialization procedure was kept rather short to reduce the total experiment
length. Therefore, all data was used for model calculation. This could have led to
overfitting and therefore might have degraded the result of the control procedure.

The control interval had to be set to 100ms because of hardware restrictions
this was partly larger than the actual time constants of the system. Normally
desirable control intervals are well below the systems time constant. This could
have added inaccuracies to setpoint tracking performance, which might be overome
by increased computing power.

Only angles of the first phalanx were measured, to avoid camera occlusion.
Therefore most certainly only part of the fingers states were know accurately to
the controller during operation. However due to the close relationship between
the movement of each fingers joints the measured angles were sufficient to obtain
functional movment, which was the main goal of this study.

4.5 Conclusion

We have shown that the designed model predictive control approach can lead to
functional and smooth movements suitable to grasp, hold and release a variety of
objects in both stroke and healthy subjects. The approach provides the possibility
of flexing and extending individual fingers selectively and therefore has the ability to
generate a broad range of movements. The procedure has potential for application
in a clinical or a home setting supplying a flexible technique for upper limb stroke
rehabilitation.
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Chapter 5

Abstract )

Stroke survivors may benefit from robotic assistance for relearning of functional movements.
Current assistive devices are either passive, limited to only two dimensions or very powerful.
However, for reach training, weight compensation and a little assistance with limited power
is sufficient.

We designed and evaluated a novel three dimensional robotic manipulator which is able
to support the arm weight and assist functional reaching movements. Key points of the
design are a damper based drive train, giving an inherently safe system and its compact
and light-weight design.

The system is force actuated with a bandwidth of up to 2.3 Hz, which is sufficient for
functional arm movements. Maximal assistive forces are 15 N for the up/down and for-
ward/backward directions and 10 N for the left/right direction. Force tracking errors are
smaller than 1.5 N for all axis and the total weight of the robot is 25 kg. Furthermore, the
device has shown its benefit for increasing reaching distance in a single case study with a
stroke subject.

The newly developed system has the technical ability to assist the arm during movement,
which is a prerequisite for successful training of stroke survivors. Therapeutic effects of
the applied assistance need to be further evaluated. However, with its inherent safety and
ease of use, this newly developed system even has the potential for home based therapeutic

Ktraining after stroke.

)
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5.1 Introduction

R obotic systems have found their way into rehabilitation practice. Although the
exact mechanisms underlying improvement of function after training with robotic
assistance are still unclear, several studies have shown benefits of the use of robotic
devices for movement therapy after stroke (Prange et al. 2006). Robotic aided ther-
apy gives similar results as conventional therapy (Kwakkel et al. 2008) and robotic
manipulators facilitate more intensive training and objective measurements (Lum
et al. 2002), without the need of a therapist being continuously present. Influ-
enced by these positive results, more and more devices are being developed for
training of both upper and lower extremity movement. Recently, a Swiss random-
ized clinical trial showed that robotic therapy for the arm can give a significantly
larger improvement compared to conventional therapy (Klamroth-Marganska et al.
2013). This is a promising result, although the costs currently hamper the clinical
use (Kwakkel and Meskers 2013). Therefore, more simple and affordable robotic
devices are desirable for rehabilitation practice.

Three recent reviews (Loureiro et al. 2011; Brewer et al. 2007; Riener et al.
2005) provide an extensive overview of upper extremity rehabilitation robotics.
Most of these devices are academic prototypes and not commercially available.
A distinction in mechanical design can be made between end-point manipulators
like MEMOS (Micera et al. 2005) and InMotion ARM (Hogan et al. 1992) on
one side and exoskeleton systems, like Armeo Power (Nef et al. 2007) on the
other side. Exoskeletons follow the natural arm anatomy and can deliver joint
specific assistance. However with exoskeletons, proper alignment between joint
axes and exoskeleton axes is crucial, requiring time and experienced operators.
Passive alignment systems have been proposed to prevent misalignment (Stienen
et al. 2009a; Schiele and Hirzinger 2011), but will always increase the complexity of
the device. Furthermore, the exoskeleton should provide large shoulder torques to
compensate for gravitational forces due to the arm and the exoskeleton itself. End
point manipulators in general have a more simple mechanical structure. Typically
these devices have a single connection with the human arm and therefore cannot
assist individual joints.

Existing upper extremity devices can also be categorized according to the
amount of assistance (e.g. number of degrees of freedom, actuator power, control-
lability) they are able to provide, see figure 5.1. There exist very powerful high-end
(mostly exoskeleton) devices on one side and passive devices on the other side. Ex-
amples of powerful high end devices are Armeo Power (Nef et al. 2007), CADEN-7
(Perry et al. 2007) and MIME (Lum et al. 2006). These devices share proper-
ties like large work-range, strong motors and fast actuators. Often these devices
are suitable for movement assistanceand for diagnosis using system identification
techniques (Kooij et al. 2005) These techniques need imposed perturbations of
the arm, which leads to increasing demands on the system. Some systems are
purposely built with this application in mind (Park et al. 2008; Stienen et al. 2011;
Otten et al. 2014). Examples of passive devices are the Dampace (Stienen et al.
2009a), Armeo Boom (Stienen et al. 2009b) and Armeo Spring (Sanchez et al.
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Figure 5.1: Overview of existing commercial arm rehabilitation devices, arranged by their provided assistance (like number of degrees of freedom, actuator
power, controllability) and ease of donning. There exist a gap in the middle, for a device with simple donning/doffing and the ability to both counteract
gravitational forces and provide some guidance forces to the human arm.
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2006). These devices mainly counteract the gravitational force acting on the arm
and allow users to use their remaining muscle capacity to move their arm without
the load of gravity. In addition, several cable-based systems have been developed
to move the arm (Rosati et al. 2005; Mao and Agrawal 2012).

Another important difference between existing devices is the control architec-
ture. Some devices (like MIME) are position controlled. These devices are very stiff
and move the arm in a certain position, which has been shown less beneficial for
therapy (Reinkensmeyer et al. 2009). Other devices are impedance controlled (In-
motion ARM, ARMin) which means that they apply a force to guide the arm based
on a measured deviation from a desired position or trajectory. A third category
are admittance controlled devices (e.g. Haptic Master). In admittance control,
interaction forces are measured and used to control the speed of the actuators
such that a certain virtual (haptic) environment is perceived by the user.

For rehabilitation purposes, currently there exists a gap between the high-end
active devices and the passive devices. A low power assistive device with a 3D
workspace can fill this gap. Thereby allowing for functional task training, when the
device is kept inherently safe and easy to operate by a non-expert, possibly even
at home.

Compensation for gravitational forces already has shown to be beneficial for
rehabilitation after stroke (Beer et al. 2007; Krabben et al. 2012; Prange et al.
2012). However for some patients gravity compensation alone is not enough to
complete certain reaching tasks, especially early after stroke. A little extra active
guidance in the movement direction additional to gravity support may help these
people in completing reaching tasks, which makes therapy much more rewarding.
Assistance of reaching tasks does not necessarily require high actuation forces. A
small force guiding the patient in the right direction would already be sufficient.
A device capable of both counteracting gravitational force and supplying assistive
forces in three directions would in potential be a great therapeutic tool to improve
reaching movements after stroke.

To fill the gap, we developed a new lightweight active therapeutic device (ATD).
This paper presents the design and evaluation of this novel three dimensional end-
point manipulator for use in functional training of reaching tasks after stroke. Key
features of the system are the ability to provide both gravity support and apply
relatively small guiding forces. In addition, the system is inherently safe, simple
to install and easy to operate by a non-expert. The design is relatively simple
in order to keep the costs low and therefore has the potential to make the final
step to clinical or even home use. This will be a big step forward along the way to
address intensive after-stroke therapy and effective rehabilitation outcome.

5.2 Hardware Design

5.2.1 Specifications

The ATD is a training system suited for training of either the left or the right
arm of a patient, see figure 5.2. Table 5.1 lists the key specifications of the ATD
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Figure 5.2: Overview of ATD system. The top left pane shows the ATD and its range of motion
(grey lines). The top right pane schematically shows the passive gravity compensation mechanism.
Interior CAD drawings, end-point gimbal and user interaction are shown in the bottom panes from
left to right.
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Table 5.1: Overview of key specifications of ATD

Parameter Value
Stature range of intended patient
population 1.46-1.88 m*
Maximum patient weight 120kg (~ 3kg arm weight*)
Fiigl-Meyer/ MRC** score of intended
patient population >30/>2
Donning time <2 min
Size of housing 0.30 x 0.23 x 0.55 m
Size of ground frame 0.90 x 1.15 m
Length of links I3 and |5 0.6 m
System weight 255 kg
Max power consumption 600 W
F=-16..15 N
Maximum actuation force*** Fy=-13.17 N
F,=-9.9N
Bandwidth of force actuation (closed loop) 2.3 Hz
Bandwidth of position actuation (closed loop) 2.1Hz
Hysteresis <22 N

* Corresponds to P01 and P99 stature range of Dutch 60+ male and female population
(Daanen et al. 2003).

** MRC = Medical Research Council Scale of muscle power;
2 = movement only if gravity is eliminated

*** Determined open loop; negative forces indicate forces in the direction of the negative axis

system. The system is intended to be used by a patient which is seated in front of a
table. Due to its compactness and low weight, the system can be transported by a
single person. The system is very flexible and allows fast adjustments of the exact
training tasks, which is beneficial for the motivation and the overall training effect
(Timmermans et al. 2010). Furthermore the amount of support or restriction can
be adjusted for each training and person, from resistive 3D forces to compensation
of gravitational forces and assistive guidance forces.

The ATD uses a combination of passive gravity compensation and active ac-
tuation to reduce required actuator power and thereby costs. The gravity com-
pensation is provided by a clock spring, of which the pre-tensioning is manually
adjustable, to provide a nominal vertical force. The end of the clock spring is con-
nected to a cable, which runs parallel to link |1, over a cam and is connected to link
I2 of the robot (figure 5.2). The shape of the cam compensates for both rotation
of angle 3, leading to a reduction of effective length of |2, and for the non-linearity
of the rotational spring. To optimize the cam shape such that compensation forces
are minimally influenced by position changes, the force error was measured by ver-
tical movement of a load using a cylindrical cam. For different angles of a, the
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Figure 5.3: Non-linearity of the passive gravity compensation. Imperfections for movement in
x and y direction are shown relative to the center xyz-position [0.6,1.0,0.0]. The actuators will
compensate for the imperfections in passive gravity compensation.

load compensation error was measured by variation of 8 with a fixed load. Based
on these load curves a new cam was calculated giving the least load variation while
varying a and 3. Resulting in the passive curve shown in figure 5.3. The remaining
deviations can be actively compensated for., while was fixed in the center position.
With reverse engineering a new cam is calculated. Before a training session is
started, the operator can adjust the spring compensation to provide the desired
compensation for a specific patient. The use of a passive gravity compensation
keeps the robot in position during donning and doffing, ensuring an intrinsic safe
situation.

5.2.2 Actuation and sensing

To meet the actuation demands of a high torque at a low speed with a standard and
compact motor, transmission and gearing is needed. The limited back drivability
of gears results in unsafe and direct coupling to the actuator. This can be reduced
by introducing elasticity in the drive chain, i.e. series elastic actuation (Pratt and
Williamson 1995). However, in the ATD this is solved by using a novel damper
approach. With a damper the generated torque is proportional with the motor
speed. The motor-damper combination makes a fast and stable torque actuator
and allows for a very compact, safe (decoupling of subject and motor) and robust
design with a relatively high closed loop bandwidth.

The damper in the drive train allows for force control by controlling the rota-
tional speed, similar to the use of series elastic actuators (Pratt and Williamson
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1995) where force is controlled by controlling spring deflection. The use of a non-
dissipating element like a spring, might however cause unstable oscillations (Oblak
and Matjacic 2011). As opposed to the SEA, the rotational damper dissipates
energy. This makes application safer for usage in robots interacting with humans
at the cost of a reduced efficiency. Furthermore the damper concept has a higher
closed loop bandwidth compared to position feedback when using a motor with
gearbox or flexible elements. This higher bandwidth is caused by the fact that the
closed loop system with a damper is part of the velocity feedback loop, while the
spring system is part of the position feedback loop. The former has per definition
a higher bandwidth.

All actuators are enclosed in the housing, see figure 5.2. The drive train of the
robot has active torque actuators for axes a and 8 in combination with the passive
gravity compensation. The actuator for the y axis is not influenced by gravitational
forces, as the axis is vertical. Therefore, a more compact drive train without
damper was chosen for axis y. All axes are actuated by a DC motor combined with
a planetary gearhead with a reduction ratio of 51:1. For the base rotation axis Y,
the DC motor drives a tooth belt connected to the robot housing. A mechanical
break-out mechanism ensures that the maximum torque in the y direction is limited
to a safe value of 11 Nm. For the other two axes, the DC motor is placed in series
with a rotational damper (Kinetrol S-CRD, Kinetrol, Farnham, UK). The use of a
rotational damper ensures that the torque is limited due to the maximum speed
of the motor and ensuring an intrinsically safe situation. A disadvantage of using
a damper is the need for continuous motor rotation to provide a constant force.
However, in the ATD system, the majority of the constant force is already provided
passively by the parallel spring. Thus the motor damper combination only needs
to provide small offset forces.

The combination of passive and active actuation ensures that the required
motor power is relatively low as the majority of the gravity compensation is provided
by the clock spring. This ensures that the system has a low power consumption
and can be connected to a standard mains connection. Furthermore, the system is
inherently safe since control errors or controller instability can never lead to large
force fluctuations or a risk of hyper-flexion of patient joints. Also the ATD does
not depend on an available mains supply to hold its vertical position, preventing
the collapse of the robotic manipulator with the patient attached in the case of
unexpected power loss.

A six Degree-Of-Freedom (DOF) force sensor (JR3 20E12 100N, JR3, Wood-
land, CA, USA) and three absolute angular encoders, together with a kinematic
model of the actuator allows the measurement of the interaction force vector be-
tween the ATD and the subject and also the position vector of the end point
position. A passive gimbal is located between the endpoint of | and the arm cuff.
The gimbal is equipped with potentiometers to measure the angles and allow for
estimation of the hand and elbow orientation.
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Figure 5.4: Schematic overview of control structure. VM indicates the virtual model used to calculate the reference force. This model consists of stiffness,

damping and offset force: Fet = (bs+Kk) (Xref 7X) + Foffsat
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5.2.3 Electronic design

The ATD is controlled by means of an embedded computer. In this computer
an embedded safety software layer is implemented to check whether values are
within acceptable bounds and ensure that possible errors in control do not lead
to unacceptably large actuation forces. On top of this embedded software layer,
custom controllers can be implemented in Matlab/Simulink (The Mathworks, Nat-
ick, USA) and uploaded to the embedded computer system for real time control.
In this Matlab/Simulink layer desired variables can be selected for logging, for in-
stance the number of movements, the interval between movements, the quality of
a movement (deviation from an ideal path) and the amount of support during a
movement. This allows for feedback to patient and physician during and after a
training session. Patient feedback is an important motivator during training (Tim-
mermans et al. 2010), while the feedback for the physician allows evaluation of the
training performance and on the longer term evaluation of the training effect.

5.3 Controller design

The control scheme is shown in figure 5.4. Two feedback loops are implemented.
The inner force control loop is initially used to compensate for small imperfections
in the passive gravity compensation (see also figure 5.3). The offset force term
(Foftset) can be used to compensate pre-measured gravitational forces. In the outer
feedback loop, the deviation from a set point trajectory (Xref) is used to implement
an impedance controller with a virtual spring-damper system (bs+Kk), leading to a
set point force (Fref).

Based on the calculated reference force (Fret) and the measured forces (F) the
force errors are calculated and subsequently transformed into joint torque errors
(Tja,B.yl.er) With the transpose of the Jacobian matrix. As the actuation for the
base (y) is different from the other axes (a, 3), this angle is controlled differently.
For axes a and 3 the joint torque errors are used to calculate the desired motor
speed (6 g] ref)), Which is proportional to a joint torque as the motors are coupled
through a rotational damper, as explained in Section 5.2.2. Pl controllers are used
to control the speed of the motors. For y, an inner force control loop is created

with PI control of the motor speed (8 ref)) based on the determined torque error.

5.3.1 Controller tuning

The torque controllers for the three axes were individually tuned. For this purpose,
the endpoint of the robot with the force sensor was fixed to the world in the middle
of the work range and the frequency response functions (FRF) for the device were
estimated (Hgeiice). To estimate Hgejice, @ multisine perturbation was applied to
one motor directly (6 g,y ref)). While the controllers were disconnected and the
reference for the other motors was zero.
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Figure 5.5: Open loop Nyquist diagrams for axes o, 3 and y. The open loop response was
estimated in the center position (green), with the device in the configurations with the lowest
inertia (blue) and highest inertia (red). The black circles denote the M = 1.3 M-circle. The black
cross denotes the [-1,0] point in the Nyquist diagram.

Control parameters were set based on the open loop frequency response function
(FRF) of each axis. The loop gain for each axis is determined by:

K
HIoop = <Kp + EI) Haevice (5-1)

in which Ky and K; are the proportional and integral gains of the controller
respectively and Hgeyice is the transfer function of the device for that specific axis.

The values for the control parameters were set using Nyquist diagrams and
M-circles, see figure 5.5 (Maciejowski 1989; Schouten et al. 2006). Briefly, the
M-circle denotes a stability margin, where a specific value for M indicates a con-
stant closed-loop gain. When the dynamical open loop response of the system
is obtained, theoretical values for the controller can be calculated iteratively such
that the closed loop system remains stable. These control values are then applied
to ensure the closed loop response of the true system indeed lies outside the se-
lected M-circle. In our case we selected M=1.3, which indicates that the highest
gain of the closed loop behaviour is 1.3. Bandwidths of the individual axes were
determined at 3.7Hz 6.4Hz and 2.4Hz for axes a, 3 and y respectively.

5.4 Performance

5.4.1 Force controller

To evaluate the bandwidth of the force controller, a multisine signal was applied
as an offset force (Foffsat) while the device was fixed to the world. The bandwidth
of the system is determined as the —3 dB point in the frequency response function
% obtained from this measurement. The obtained frequency response functions
are shown in figure 5.6. The bandwidth was estimated to be 7.0 Hz, 6.1 Hz and
2.3 Hz for Fy, Fy and F; respectively.

To evaluate the response speed of the ATD, the responses to step force inputs
were measured. From these step responses the settling times were calculated for
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Figure 5.6: Frequency response functions for the force controllers along axes X, y and z. The force
control bandwidth was estimated as the frequency where the gain crosses the -3dB line (dotted
line). The top pane shows the gain of the frequency response function and the phase is shown in
the middle pane. The coherence is shown in the bottom pane.

each direction. In figure 5.7, the responses to step inputs of 1 N, 5 N, 10 N and
15 N are shown. Average settling times were determined at 0.24 s, 0.18 s and
0.40 s for Fy, Fy and F; respectively.

To evaluate the force tracking accuracy and whether the force directions are
properly decoupled, sinusoidal reference force trajectories were applied. RMS errors
between the reference and actual trajectories were determined as a measure of
performance. Figure 5.8, shows reference and measured forces for all three axis
during the sine tracking experiment. RMS errors were estimated at 0.74 N, 0.35N
and 1.47 N for K, Fy and F; respectively.

5.4.2 Position controller

To evaluate the bandwidth of the position controller, a multisine signal was applied
as a position perturbation while the reference was set at a fixed (neutral) position.
The bandwidth was estimated to be 2.1 Hz, 3.9 Hz and 2.1 Hz for X, ¥ and z
respectively.

End point stiffness of the device was evaluated by using a fixed reference posi-
tion. The device was moved manually away from its reference position while forces
and positions are recorded. The measured stiffness was compared to the value of
the virtual stiffness, Kk, which was set in the controller. During the measurement
the robot’s end point was manually moved.

Figure 5.9 shows the measured and theoretical stiffness values for x, y and z
directions during trials with different settings for the position controller. The slope
of measured and theoretical lines are similar. Note that the ATD can apply a
limited amount of force (also to ensure safety), which causes the saturation effects
in the graphs.

Another important observation from figure 5.9 is that the system has little force
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Figure 5.7: Responses to step force inputs for X (top), Y (middle) and Z (bottom). Reference
forces are shown in black. Blue lines show the measured response. Step inputs of 1 N, 5N, 10N
and 15N were applied. The 10N and 15N step were omitted for the Z axis, as these are outside
the force range of the Z-axis.
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Figure 5.8: Tracking of sinusoidal reference forces. In each trial (1, 2 and 3) the reference for a
single axis was a 0.5 Hz sine with an amplitude of 5 N, reference forces for the other two axes
were zero. Panes in the same column belong to the same trial, thus indicating the induced errors
based on a perturbation of one of the other axes. Reference forces are shown in black, measured
forces in blue.
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hysteresis. Any hysteresis present induces non-linear behavior of the system and
reduces performance. In practice this will cause non-continuous force assistance
to a patient when the movement direction of an axis inverts during motion. If
the assistive force fluctuates, this may be mistaken for a patient induced deviation
from the ideal reference trajectory and will cloud the measurement results.

The hysteresis present in the system was calculated from the measurements
shown in figure 5.9. The average hysteresis for the different stiffness settings was
estimated at 0.6 N, 1.4 N and 1.6 N for x, y and z respectively.

To evaluate the performance of the position controller, a mass comparable
to the weight of a nominal arm (2.3 Kg) was attached to the endpoint of the
robot. Passive gravity support was adjusted to compensate for the added weight.
Circular reference trajectories were applied to move the weight along a circle in the
horizontal plane (k= 150N/m, b= 35Ns/m). The results are shown in figure 5.10.
RMS errors between the reference and actual trajectories were estimated at 13.1
mm, 2.1 mm and 4.0 mm for x, y and z direction respectively for the circular
movement duration of 10 seconds (0.6 rad/s) and at 5.8 mm, 0.86 mm and 3.1
mm for x, y and z direction respectively for the circular movement duration of 20
seconds (0.3 rad/s).

5.4.3 Evaluation in possible application

To evaluate the ability of the device to assist patients, a single case study was
performed with a male stroke subject (62 years old) with minimal voluntary arm
function (Action Research Arm Test score of 3 points). The stroke subject was
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Figure 5.10: Example of position tracking with a circular reference trajectory while moving a
2.3kg weight along a circular reference trajectory with k= 150N/m and b = 35Ns/m. Reference
trajectories were set at either 10 seconds per circle of 20 seconds per circle. Three distinct circle
diameters were used as reference: 0.1m, 0.3m and 0.5. For each diameter/speed combination,
the averaged resulting movement of five repetitions is shown. Reference positions are shown in
black. The colored lines show the measured positions for the different combinations. All starting
positions were set at [0,0] for comparison.
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Figure 5.11: Result of circle drawing tasks of the single stroke subject. Results are shown for the
following conditions: 1) without support of the device (blue); 2) with gravity support provided by
the device (green with dots); 3) with a virtual table pushing the arm upward (red with triangles);
and 4) Passive movement pulling the arm towards a circular trajectory with k= 100N/m and
b =22Ns/m (black with crosses). The gray circles indicate shoulder, elbow and hand positions.
The bars between the circles represent upper and lower arm of the subject.

asked to make a circular movement with his hand in the horizontal plane using visual
feedback under each of the following conditions: 1) without support of the device,
2) with gravity support provided by the device, 3) with a virtual table pushing the
arm upward when moved below a certain position threshold and 4) passively, with
the device moving along a circular reference trajectory (k=2100N/m, b=22Ns/m).
For conditions 2, 3 and 4, the weight of the arm was measured beforehand and
used as offset force in y-direction.

Figure 5.11 shows the results for all four conditions. Support of arm weight
has a clear beneficial effect as the patient is then able to maintain the arm around
shoulder level (compare the blue line (voluntary movement) in figure 5.11 with
the other lines). Gravity support only (green line with dots) and combined with
a virtual table (red line with triangles) gave similar results. The movement range
was extended when the robot provides additional movement assistance during the
passive condition (black line with crosses).
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5.5 Discussion

In this paper we presented and evaluated a novel three dimensional end-point
manipulator for use in functional training of reaching tasks after stroke. The
system is aimed at assisting patients during functional upper extremity exercises.
The system is lightweight (25kg) and easy to operate by a non-expert, which leads
to the potential of making the final step to clinical or even home use.

During the passive movement condition the reference trajectory was a large
circle in the horizontal plane. However, the patient's arm did not follow this
trajectory and the actual circular path was much smaller than the reference path.
This resulted from a combination of imperfect gravity compensation and limited
motor power. This led to a saturation of the motor, as this motor was already used
partially for compensation of gravitational forces. As mentioned before this can
be overcome by implementing a passive spring with a higher stiffness for providing
passive gravity compensation around the a axis, which would then also improve
the provided assistance.

5.5.1 Comparable systems

Our objective was to develop a device which fills the gap between passive devices
and high-end devices. Therefore there are no directly comparable systems. How-
ever, we can compare the system presented here to the other (high-end) active
devices as shown in figure 5.1, since in theory these devices could provide the same
assistance as the ATD system. The ATD system has much lower assistive force
capability (~ 15 N) compared to the Armeo Power (~ 75 N) and the Haptic Mas-
ter (~ 100 N). Also the bandwidth of the ATD's position controller (1.4 HZ) is
lower than the bandwidth of the Armeo Power (2.1 Hz) and the Haptic Master
(>10H2).

Currently, stiffness values of up to 250 N/m can accurately be rendered with
impedance control, which is low compared to the Armeo Power (> 714N/m) and
the Haptic Master (up to 50kN/m). However, for guidance of movement 250N/m
will be sufficient. Further reducing the stiffness of the position controller can be
used to allow the user to deviate more easily from the reference trajectory, which
is helpful for rehabilitation purposes.

Although, the ATD system has lower force capability, lower endpoint stiffness
and lower bandwidth compared to Armeo Power and Haptic Master, this will not
be a limitation when the system is applied for low frequent functional tasks (e.g.
reaching movements). Moreover, the ATD system is more compact and has much
lower weight (~ 25 kg) than both the Armeo Power (> 200 kg) and the Haptic
Master (~ 40kg). This gives the current system the benefit of being more easy to
handle, move and transport. Together with the low force capability and inherent
safety due to the dampers in the drive train, this makes the ATD perfectly suited
for functional training in a home environment.

94



A robotic end point manipulator for rehabilitation after stroke

5.5.2 Clinical implications

The device has two main rehabilitation applications. These can be deployed de-
pending on the ability of individual patients, possibly in a home environment en-
abling frequent training. The first application is compensation of gravitational
forces. Gravity compensation had been shown beneficial for rehabilitation of stroke
patients (Beer et al. 2007; Krabben et al. 2012; Prange et al. 2012). Literature
reports increased work range due to reduced flexion couplings when compensat-
ing for gravitational forces. When patients improve, gravity compensation can be
reduced to keep the training challenging.

A second application is the active assistance of motion. When patients have
difficulties in reaching the arm towards an object, the device can assist them in
reaching the object with the trajectory guidance mode. When patients improve, the
assistance can be reduced again. For rehabilitation purposes the virtual stiffness
and damping parameters can be used as tuning parameters to make the robot
either stiff or compliant, depending on the amount of assistance the subjects needs
during the movement. With such an approach, therapy can be both motivating
(patients can reach the targets) and challenging (patients should provide sufficient
effort to get to the target).

To assist reaching towards objects in a training environment a minimum jerk
reference trajectory (Shadmehr and Wise 2005) towards a predefined object posi-
tion is currently implemented. In addition, circular reference trajectories are imple-
mented, allowing for assistance during circle drawing tasks (Krabben et al. 2011;
Sukal et al. 2007). However, the interface also allows for defining custom reference
trajectories.

The benefit of both the gravity support and active assistance have been shown
in a single case study with a stroke subject with minimal arm function (ARA
test score of 3 points). In figure 5.11, differences in movement can be observed
between the patient’s moving voluntarily without any assistance and moving with
support of his arm weight by the ATD. With support of arm weight the patient
is capable of lifting the arm at shoulder level. Since the patient had minimal arm
function, the size of the movement with compensation was still very minimal. When
active assistance was added, the movement size became much larger, indicating
the training potential of the device.

However, there was no noticeable difference between compensation of gravity
only and the condition with a virtual table surface. This is likely the result of the
minimal voluntary function of the patient. We expect that patient’s with more
voluntary arm function can benefit from the virtual table, by using this feature to
get more elbow extension due to the synergies often occurring after stroke (Beer
et al. 2007). Additional clinical tests are required to verify this.

5.5.3 Limitations

The current design is a first iteration in developing a compact low-power assistive
end-point manipulator. The performance was already shown sufficient for assist-
ing functional reaching movements. However, there are some small points which
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could easily improve the performance even further. Currently, the y axis has the
worst performance and is therefore the bottleneck. The lower performance mainly
resulted from conservative rules to limit the motor speed and torque output on this
axis to prevent enabling of the mechanical break out system. This also resulted in
a slower response and a lower force bandwidth in the z-direction (2.3HZ) compared
to the x- and y-direction (7.0 Hz and 6.1 Hz respectively). This bandwidth will
be sufficient for low frequent, relatively slow movements (e.g. reaching tasks),
however with some minor modifications to the design (stronger motor or also use
a damper driven solution for y axis) the potential of the device could be increased
even further.

In addition the imperfections in gravity compensation in relation to movement
along the x-axis are higher than expected. This results in higher requirements for
the motor (@) to eliminate these perfections. This limits the force range in certain
positions and could be overcome by the use of a spring with higher stiffness for the
passive gravity compensation around the a-axis, which will be implemented in a
follow up design.

5.6 Conclusion

The novel system presented here we are able to fill the gap between high power
assistive devices and the passive devices. With its capability of providing both
compensation of gravitational forces and assistance during functional tasks, the
ATD system is a great assistive tool during the rehabilitation process. Due to the
inherent safety, low weight and compactness of the system, intensive functional
task training becomes available, potentially even in a home environment.
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4 Abstract h

Rehabilitation of both arm and hand function is an important aspect for increasing functional
independence of stroke subjects. Robotics and functional electrical stimulation (FES) can
support reach and grasp and aid rehabilitation. The aim of this study is to demonstrate
the technical feasibility of an integrated device combining robotics and FES for functional
manipulation of objects.

To support grasp and release, FES was applied using Model Predictive Control (MPC) to
control joint angles of thumb and fingers. In addition, reach support was provided by a
novel 3D robotic manipulator. The system's performance was evaluated in both stroke and
blindfolded healthy subjects, where the subject’s passive arm and hand made functional
reach, grasp, move and release movements while interacting while manipulating objects of

different sizes.
The success rate of complete functional grasp, move and release movements with different
objects ranged from 33% to 87% in healthy subjects. In severe chronic stroke subjects only
partial trials were completed successfully. In healthy subjects, overall success rates for the
subtasks reach, hand opening, grasping, holding, positioning and releasing the object were
89%, 96%, 96%, 98%, 76% and 100% respectively.
We demonstrated that our developed integrated training system can move the passive arm
and hand for functional pick and place movements. In the current setup, the positioning
accuracy of the robot with respect to the object position was critical for the overall per-
formance and could be improved by the use of a higher virtual stiffness and by including
feedback of object position in the robot control. The system has potential for post-stroke re-
habilitation, where support could be reduced based on patient performance which is needed
Kto aid motor relearning of reach, grasp and release. j
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6.1 Introduction

Stroke survivors often have a diminished arm and hand function, which reduces
their ability to interact with objects. In many activities of daily living, like drinking
or opening a door, human-object interaction is essential. Therefore rehabilitation
of both arm and hand function is an important aspect for increasing functional
independence of stroke subjects. Being able to grasp and release without the ability
to reach, or being able to reach without the ability to grasp and release, does not
lead to a functional movement. From a functional point of view, combining reach
support with grasp and release training in a single rehabilitation solution would be
desirable.

In the past decades robotic technology has emerged to aid the rehabilitation
process of stroke subjects. Robots are particularly useful for support of repetitive
tasks with high repeatability and without the need for continuous presence of a
therapist. Many robotic systems capable of supporting or training the arm during
reach have been developed and evaluated (Loureiro et al. 2011). Some robotic sys-
tems targeted at hand support have been developed (Worsnopp et al. 2007; Dovat
et al. 2008). However, high complexity is needed to properly actuate the hand
with external mechanics. Therefore hand robotics is currently not very applicable
for functional movement training, i.e. integrated with arm movement, especially
not in a home environment which could be the future of automated rehabilitation
systems allow intensive training.

Besides therapeutic robotics also functional electrical stimulation (FES) is be-
ing used to restore hand function in stroke survivors. FES of finger and thumb
muscles can be beneficial for stroke subjects in relearning functional grasp and
release movements (Micera et al. 2010). FES has been used successful for both
neuroprosthetic (Sheffler and Chae 2007; Snoek et al. 2000) and therapeutic sys-
tems (Powell et al. 1999; Rosewilliam et al. 2012; de Kroon et al. 2002; Barsi et
al. 2008; Malhotra et al. 2012). However, current commercially available systems
use an open loop approach, which limits performance and requires continuous user
input (Lynch and Popovic 2008). Also FES control needs a personalized approach
due to the high variability between subjects (chapter 2).

To increase training independence, an approach for training without the need for
a therapist being continuously present is preferred. Recently, we have developed a
Model Predictive Control (MPC) approach to selectively control fingers and thumb
for grasp and release with FES (chapter 4). The strength of this approach is the use
of a personalized model relating the stimulation level to the resulting movement. In
addition, this method has potential for application in an automated system allowing
for therapist-independent training.

The overall goal of our research is to develop an integrated post-stroke training
environment for home use by a combination of robotic arm support and FES support
of grasp and release. For relearning after stroke a high level of patient involvement
is required (Reinkensmeyer et al. 2009), therefore a training system should focus
on reducing support based on the ability of the individual patient (Freeman et
al. 2009; Wolbrecht et al. 2008). However, as a first step, we will focus on full
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Table 6.1: Properties of participating subjects

S1 S2 H1 H2
Age 62 67 25 28
Sex M M M M
Hand R R R R
ARAT 3 11 n/a n/a
Months +stroke 160 112 n/a n/a

support of movement (in which the subject is passive) in healthy subjects and
chronic stroke subjects. The aim of this paper is to demonstrate the feasibility of
a combined robotics-FES rehabilitation system for full support of functional object
manipulation tasks. Full support will be the most challenging from a technical
point of view and is therefore evaluated here.

6.2 Materials and Methods

6.2.1 Subjects

Two stroke subjects (51-S2) and two healthy subjects (H1-H2) participated in this
study. The affected side for the stroke subjects and the dominant side for the
healthy subjects was supported. Subject characteristics are shown in table 6.1.
The study was approved by the local ethics committee and all subjects signed
written informed consent.

6.2.2 Experimental setup

Robotic device for reach support

A custom-built robotic device was recently developed (Demcon, Enschede, The
Netherlands) (Chapter 5). This device (see figure 5.2) is a 3D end effector which
can both compensate gravitational forces of the arm and manipulate the arm in
space. The device has two key features. Firstly, it compensates gravitational
forces passively and secondly, it provides active guidance with damper based drive
trains, which makes the device inherently safe by the use of low power motors and
decoupling of the motors and the load. In addition to these key features, the device
is compact, has low weight and allows for fast donning and doffing.

The device can apply forces to the subject’s arm using three active and three
passive degrees of freedom. A spring is mounted parallel to the actuator of the
B axis (see figure 5.2). The pretension of this spring can be adjusted in order
to passively compensate for the weight of the subject’s arm. All actuators are
mounted in the base. Rotation of the base and rotation of links I3 and |, (see
figure 5.2) are actuated. At the end point a passive gimbal is mounted between
the linkage and the arm cuff, which allows for arm rotations relative to the linkage.
A six degrees of freedom force sensor mounted at the end of the linkage measures
the interaction forces between the arm and the linkage. With the encoders on the
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active axes and potentiometers on the passive gimbal the arm and hand positions
are calculated.

The robot’s embedded computer (Bachmann electronic GmbH, Feldkirch, Aus-
tria) received reference force setpoints from an xPC target computer (The Math-
works, Natick, USA) through analog communication channels.

MPC and FES to support grasp and release

We recently developed a model predictive controller (MPC) for electrical stimula-
tion of finger muscles to facilitate grasp and release, described in details in (chapter
4). The same method was applied in the current study for control of hand opening
and closing and is briefly described below.

An overview of the FES controller is shown in figure 6.3. The obtained system
model was used by the MPC (Camacho and Bordons Alba 2004) to calculate the
optimal stimulation amplitudes in order to reach the reference finger angles.

Two custom-built electrical stimulators (TIC Medizin, Dorsten, Germany) each
having three independent stimulation channels were used to stimulate finger and
thumb muscles. Three stimulator channels were used for targeting thumb mus-
cles (abductor pollicis longus, opponens Pollicis and Flexor pollicis brevis), the
other three channels were used through a multiplexer for targeting both the flexor
digitorum superficialis muscle with three electrodes and the extensor digitorum
communis electrodes muscle with three electrodes. During grasp tasks the flexor
electrodes were activated and during release tasks the extensor electrodes were
activated. Thus, in total nine stimulating electrodes were placed. The flexor and
extensor muscles were placed at positions evoking selective movement of individual
fingers to allow for more selective finger control. As the ring and little finger were
less selective and often respond simultaneously, they were targeted with a single
electrode. See figure 6.1 for an example of the electrode placement.

A VisualEyez (Phoenix Technologies, Burnaby, Canada) motion capture system
was used to track positions of active LED markers on hand and fingers. Marker
placement is shown schematically in figure 6.2. Three markers were based on
the back of the hand to represent the hand coordinate frame. In addition, two
markers were placed on the proximal phalanges of each finger. From these markers
metacarpophalangeal (MCP) joint angles were calculated. For the thumb angles
in the plane of the coordinate frame (flexion/extension) and perpendicular to the
coordinate frame (abduction/adduction) were calculated.

The measured marker motions were sent to the xPC target computer. The MPC
system was implemented on this computer using the marker motions to calculate
finger angles and control the fingers towards reference angles. Together with the
generation of set point forces for the robotic manipulator, the xPC target computer
thereby provided synchronous control of reach, grasp and release.

6.2.3 Experimental protocol

Initially, the electrodes were placed on the target muscles, based on visual inspec-
tion of the evoked responses. In addition, maximum stimulation amplitudes were
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Figure 6.1: Overview of electrode placement on the dorsal (a) and palmar side (b) of the arm
and hand. Electrodes are placed above the finger extensors (1..3), finger flexors (4..6), abductor
pollicis longus (7), opponens pollicis (8) and the flexor pollicis brevis (9). Two ground electrodes
(G) were used for each of the two stimulator devices.

Figure 6.2: Schematic representation of placement of motion tracking markers on the back of the
subject’s hand (chapter 4).
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Figure 6.3: FES control system. A MPC approach is used to control the finger movement, which
is measured by an optical motion capture system

determined for all electrodes. The maximum was determined by occurrence of one
of the following three events: subject discomfort, crosstalk to other muscles or
saturation of response, which was in general the first event to occur. When all
electrode positions were determined, the arm was fixed in the cuff of the robotic
manipulator and the passive weight compensation was adjusted for the subject’s
arm weight.

Subsequently, an initialization procedure was started to obtain a subject specific
model relating the input stimulation amplitude to the resulting finger movement.
During this procedure each electrode was activated with random stimulation am-
plitudes up to the determined maximum while the subject was relaxed. The robot
was in a fixed position slightly above the table in front of the subject. This position
was later used as a starting position for the functional movements.

The Action Research Arm Test (ARAT) was used as a test bed for passive
grasp and release movements. Four objects of the ARAT (the wooden ball (7.5
cm) and three cubes: 2.5 cm, 5 cm and 7.5 cm) were selected to evaluate the
system with objects of different weight, size and shape. The respective weights
of the objects were 0.14 kg, 0.01 kg, 0.09 kg and 0.3 kg, for the ball and the
cubes ordered by increasing size. Coordinates representing three positions were
pre-programmed into the robot: A) a starting position, B) an object position on
the table in front of the subject were the ARAT objects were initially placed, and
C) an object target position were the objects had to be moved to.

A minimum jerk trajectory generator was implemented to create reference tra-
jectories to move between two defined positions with a predefined duration. A fixed
virtual stiffness of 100 N/m was implemented to let the force controlled robot guide
the arm towards the reference trajectory based on the measured position.

Task specification

During the tasks the subjects were asked to relax. The healthy subjects were blind-
folded to prevent them from knowing which object they had to grasp and where.
Thereby voluntary movement interference was prevented. Tasks were repeated
five times for each object for both fast movement (5.5 seconds in total) and slow
movement (24 seconds in total). The movement was divided in six subtasks:

1. move from the start position to the object
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2. open the hand for grasp

3. close the hand while holding the robot in position
4. move and hold the object

5. position the hand for release, and

6. release the object.

First the robot was set to keep the arm in the starting position. Next, the robot and
MPC were set to follow reference trajectories according to the described subtasks.
Subtasks 1 and 2 overlapped in time to increase smoothness of movement. After
object release the hand was moved back to the starting position to be ready for
the next trial. When the object was grasped successfully and released at the
target position, the trial was marked successful. Otherwise, the subtask on which
the movement failed was logged. When the robot had returned to the starting
position, the operator placed the next object at the object position and removed
the previous one.

6.2.4 Recordings and data analysis

The primary outcome measure was the success of the functional object manipula-
tion task. Success rates for the different objects were logged for all subjects. In
addition the success rates for the subtasks were logged. Trials were aborted when
a subtask failed, therefore the number of evaluated trials per subtask depends on
the success of all preceding subtasks.

Interaction kinetics was a secondary outcome measure. Kinetic data obtained
from the robot’s force sensor was used to estimate voluntary interference by the
subject. In addition, kinematic patterns of hand position were obtained from the
robot’s sensors and finger joint angles were obtained from the motion capture
data. The performance in tracking the hand and finger reference trajectories was
evaluated.

As the robot operates in closed loop and the interaction force depends on
both the subject and the robot, we cannot directly separate the amount of force
provided by the robot and the user. Therefore, we assessed the energy balance
of the interaction between the subject and the robot by integrating the product
of force and velocity over time, thus estimating work done between both systems.
As the start and the end positions of the movement are the same and at rest, the
total kinetic and potential energy changes are zero, thus the work done should be
zero if the combination of robot and subject behaved as a conservative system.

The MPC was evaluated by the success in grasp and release of the selected
ARAT objects: wooden ball (27.5cm), small cube (2.5cm), middle sized cube (5
cm) and large cube (7.5 cm).
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C

Figure 6.4: Example of the controlled movement in a healthy subject: a) reach to grasp, b) grasp
and move and c) objects release.

6.3 Results

Examples of the different hand states (hand open, pinch grip and cylindrical grip)
controlled with MPC are shown in figure 6.4. In addition the supplementary video!
shows the system in action while successfully moving the arm of a passive subject
and manipulating different objects.

6.3.1 Success rates

In table 6.2 the success rates of the full reach, grasp, move and release move-
ment sequences with the different objects are shown. In the healthy subjects the
majority of trails was finished successfully. In S1 the electrical stimulation was

1Video available at http://youtu.be/8w-AhHzpXs8
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Table 6.2: Success rates of complete object manipulation tasks

Object S1 S2 H1 H2

2.5 cm cube - 0% 75% 67%
5.0 cm cube 0% 0% 57% 87%
7.5 cm cube - - 33% 40%
Wooden ball - 0% 75% 45%

successful outside the robot, however when the arm was placed in the arm cuff
of the robot, the finger flexors did not respond to the stimulation anymore, likely
due to skin/electrode movement with respect to the muscle. Therefore when this
observation was made the other objects were not evaluated to save time as this
would not provide new information. In S2 the stimulation of grasp and release was
relatively successful, however the middle finger had high tonus and did not extend
sufficiently which caused pushing away of the larger objects. Therefore evaluation
of the largest cube was omitted. For the small cube, reach was mainly successful
but the grip was not firm enough to prevent slippage of the object.

As shown by table 6.2, the reach, grasp and release movements provided by
the system were not always successful. To investigate the failures in more detail,
figure 6.5 shows the successes and failures of all trials in healthy subjects and stroke
subjects distributed over the different subtasks. In healthy and stroke subjects
positioning of the robot had high failure rates. In the stroke subjects, hand opening
was only successful in a few trials and none of the objects was successfully grasped.
For the stroke subjects, no data was available for moving the object, positioning
the hand for release and releasing the object, since all trials had failed before object
movement could occur.

6.3.2 Tracking performance

Figure 6.6 shows time series of arm/hand movement and finger movement dur-
ing multiple trials in subject H1 and S2. The performance of tracking the refer-
ence positions was evaluated separately for arm movement and finger movement.
The arm position tracking RMS errors averaged over all trials was 69.6 £ 17.5
and 1451+ 27.8 for healthy subjects and stroke subjects respectively. Thus the
positioning errors in stroke patients were about twice as large as in the healthy
subjects. Steady state errors for opening the hand for grasp in healthy subjects
were 14.6+11.0° 1884 16.2° and 19.14+ 11.6° for index, middle and ring finger
respectively and 1854 12.6° and 21.44-14.4° for thumb abduction and exten-
sion respectively. In the stroke subjects hand opening steady state errors were
325+9.1° 255+7.7° and 112+ 6.3° for index, middle and ring finger respec-
tively and 8.2+6.3° and 6.9+ 3.6° for thumb abduction and extension respectively.
Angular errors of ~ 20° will lead to a displacement of ~ 3cm at the finger tips,
depending on the finger length.
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Figure 6.5: Causes of failure in healthy subjects (a) and stroke subjects (b). Bars indicate
occurrences of successful trials (gray) and failures (white) for each of the following subtasks:
positioning hand for grasping (POSg), opening hand for grasping (OPEN), grasping the object
(GRASP), hold and move the object (HOLD), position the hand for object release at the target
position (POSr) and release the object at the target position (RELEASE).
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Figure 6.6: Measured arm/hand positions and finger angles (solid) compared to reference positions
and angles (dashed) for trials with a 5cm cube for subjects HI (top) and S2 (bottom). For S2
only the reach to grasp part is shown, trials were aborted due to ineffective grasp. Thumb and
finger angles are reported relative to the subject’s neutral position. Angles were defined zero
when the subject relaxed his hand and stimulation was off.

110



Passive reach and grasp with FES and robotic arm support

6.3.3 Subject passiveness

For technical evaluation of the combined system of robotics and electrical stimula-
tion, it is important to know the performance independent of any user interaction.
Therefore, subjects were instructed to relax. In addition, the healthy subjects
were blindfolded to remove information on object location and type. To check
whether the subjects were indeed passive during the trials, the total work during
each trail was calculated for the healthy subjects and corrected for the potential
energy change due to the measured height difference at beginning and end of the
trial. The average corrected work done by the robot on the user during the trial
is 0.1+ 0.5J and 1.3+ 0.8J for subjects H1 and H2 respectively. "These negligible
values indicate that the combination of robot and subject behaved conservatively.

6.4 Discussion

Our aim was to show the feasibility of using a system combining robotics and
functional electrical stimulation for functional tasks in which the subject was pas-
sive. From our results we can conclude that the current system was not applicable
for (these) chronic stroke subjects, as we were unable to complete the tasks suc-
cessfully. However, the combination of robotics and FES was shown technically
feasible in healthy subjects. The high success rates in healthy subjects, together
with the fact that the failure rate in stroke subjects was partially influenced by
technical limitations, indicate the potential of the system for application in post
stroke rehabilitation.

6.4.1 Technical limitations

Two technical limitations can be identified after evaluation of the current system:
1) a possible mismatch in programmed object locations and actual object locations
and 2) interference of the robotic arm cuff with the electrical stimulation outcome.

In the current setup the object location was pre-programmed in the robot con-
troller. Therefore performance was prone to small deviations in manual object
placement or in robot movement. Currently the applied virtual stiffness was rel-
atively low. An increased robot virtual stiffness might improve robot positioning.
Currently, this virtual stiffness was limited by the noise level within the analog
communication between the robot’s embedded computer and the xPC target com-
puter. Even with an increased stiffness, small errors in object repositioning could
still lead to grasp failures, since objects were manually positioned at a marked po-
sition and the robot was calibrated to move to that same marked position. For
future systems we suggest to incorporate active user involvement (desired in re-
habilitation) in combination with intention detection to improve the positioning
accuracy and reduce the number of failures. Additional feedback of object/target
positions within the system could also lead to a reduction of positioning errors, as
the user can then actively steer the system to the desired position.

In subject S1, the arm connection of the robot might have influenced the
electrical stimulation responses. Currently, the cuff of the robot is attached over
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the middle of the forearm. Thereby, it is placed over the electrodes and muscle
bellies, which is likely to influence the stimulation responses. Redesign of the arm
connection, such that it is attached only near the elbow and near the wrist, will
remove the problem of interfering with the stimulation and is therefore suggested
to increase outcome.

The healthy subjects were blindfolded to reduce the possibility of voluntary
interaction. Since object positions were constant over trials, subjects might have
learned the positions and could still have actively contributed to the movement
based on their proprioception. However, the small values for the net work done by
the robot during the trials are an indication that active user involvement is minimal
during the trials.

6.4.2 Clinical implications

Fully supporting the reach, grasp and release movements will be a first step towards
an integrated system for rehabilitation after stroke. To apply this system in the
clinic or in a home environment, robot positioning and arm interface should be im-
proved as described above. In addition, four important modifications are necessary
before the system can have clinical merit: 1) donning and doffing time should be
reduced, 2) a more mobile finger measurement system should be used, 3) support
should be tailored to the ability of the individual patient instead of full support and
4) the user should be given control by detection of his/her intention. Suggestions
for these modifications are discussed in the next paragraphs.

To reduce donning time, array electrodes (Popovi¢-Bijeli¢ et al. 2005; Kuhn
et al. 2009; Malesevi¢ et al. 2012) could be included to automatically search for
the best positions and possibly compensate for altered stimulation responses due to
skin or nearby muscle movement. To reduce model initialization time, intelligent
solutions are needed to start training early and improve the model during the
training session. This could be achieved by a form of initial automated electrode
testing (MaleSevi¢ et al. 2012) and recursive model estimation (e.g. Moon et al.
2005). In addition, models obtained from previous sessions might be used as a
starting point. Further research to find the optimal tradeoff between short model
initialization time and high model accuracy is needed.

A VisualEyez optical motion system was used in the experiments reported in
the current paper. This is perfectly suited for a laboratory setup, however for a
clinical application such a system is not desired. For clinical application a more
compact and more plug and play solution is needed. Measurement gloves (Williams
et al. 2000; Simone and Kamper 2005; Veltink et al. 2009; Oess et al. 2012)
or commercially available devices like Microsoft Kinect (Chang et al. 2011) or
LEAP motion (Weichert et al. 2013) might be used as a more portable solution for
feedback of finger angles.

Forcing a passive subject in a specific movement path without voluntary effort
does not result in relearning of movement (Reinkensmeyer et al. 2009). To promote
motor relearning, the amount of support should be based on patient performance
such that the patient is maximally active and still able to complete the task (Wol-
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brecht et al. 2008). Therefore iterative learning control (Freeman et al. 2009) or
other assist-as-needed approaches (e.g. Wolbrecht et al. 2008) are necessary to use
the current system successfully for rehabilitation.

For rehabilitation purposes, it is desired that the patient can control the move-
ment (Huang and Krakauer 2009), therefore the system should be able to detect
the patient’s intention. The measured interaction force might be used for this pur-
pose. Due to inertia in the system, measured interaction forces indicate intended
movement by the user when the system itself is not moving. The system can be
programmed to provide support either when a certain force threshold is exceeded
or proportional to the measured force. Admittance control schemes have been ap-
plied for similar systems to let the system respond to a detected interaction force
with movement based on a dynamic model (Spenko et al. 2006; Duchaine and
Gosselin 2009; Huo et al. 2010). By changing parameters in the dynamic model,
the support can be adjusted to a desired level while leaving the user in control of
the movement.

With the mentioned further improvements, the current system has great po-
tential for support of movement during post-stroke functional training. Due to
the compactness of the system, future versions might also become applicable in a
home environment, allowing for intensive therapy. However, as currently only pas-
sive movement was evaluated, the therapeutic effects need further investigation.

6.5 Conclusion

A combination of Model Predictive Control of FES and robotic arm support can
be successful in supporting functional tasks. Currently, we have evaluated pas-
sive reach and grasp with the combined system. The approach was successful in
complete functional reach, grasp and release of objects in only 37% of the trials.
The main cause of failure was position mismatch between the robot and the ob-
ject/target position. Based on high success rates of the subtasks we expect to
improve performance even further by increasing the virtual stiffness of the robot
and by closing the positioning loop, i.e. feedback of the exact object position to the
robot. This could be achieved either by artificial measurement of object position or
by allowing the user to steer the robot, which removes the need of preprogramming
the positions.

For therapy after stroke, the current approach should be extended towards
an assist-as-needed approach with user intention detection to maximize patient
involvement. Benefits and feasibility of such an approach should be further inves-
tigated. However, since passive movement has been shown technically feasible, we
are confident that reducing the support to engage the patients will be also feasible
with the current system.
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Stroke is a major cause of morbidity in the western world. As life styles in less
developed countries are changing, stroke spreads more throughout the entire world
(Ovbiagele and Nguyen-Huynh 2011). The number of stroke survivors is likely to
increase further due to graying of society and continuously improving health-care.
Graying of society also leads to a reduced number of available caregivers. Thus,
stroke not only has a huge impact on an individual's life, but also causes a large
burden for the health care system due to the importance of intensive training to
promote recovery.

Technological innovation could be a solution to reduce the stress on the health-
care system. Conventional stroke therapy (Langhorne et al. 2009) focuses on
training movement of the affected limb. The assistance of functional movement
often applied by physical therapists might be partially taken over and intensified
by an automated system. The role of a physiotherapist will then become more
supervisory, which allows for simultaneous training of multiple patients or even
training at home and thereby increased health-care efficiency. Effectiveness in post
stroke rehabilitation is the subject of numerous studies in the fields of rehabilitation
robotics (Lum et al. 2002; Prange et al. 2006; Krebs et al. 2008; Kwakkel et al.
2008; Loureiro et al. 2011) and functional electrical stimulation (FES) (de Kroon
et al. 2002; Sheffler and Chae 2007). The effects of these techniques have been
shown as effective as conventional therapy. A combination of techniques with focus
on functional movements might even be superior to conventional therapy.

The aim of this thesis was to develop and evaluate methods for proper control of
an automated hybrid rehabilitation system: combining robotics for reach assistance
and FES for grasp & release to allow functional upper limb movement training.
For successful clinical application, such a device should be safe and easy to use by
a non-expert and should allow for fast donning and doffing to maximize available
time for training.

Functional grasp and release is essential for manipulation of real objects, how-
ever without successful positioning of the arm (reaching out), grasp and release
becomes virtually useless from a functional point of view. The focus of the thesis
lies mainly on technical feasibility of such a combined system and its individual
components. The obtained knowledge will be discussed in the following sections.
It will contribute to future developments of stroke rehabilitation systems, which
address full functional arm movements.

7.1 Selective electrical stimulation of grasp and release

Dexterous hand movement and ease of manipulation of objects with different
shapes and sizes is an important function which distincts human beings from most
other mammals. FES allows to externally activate muscles and assist movement
(Micera et al. 2010). For rehabilitation purpose, surface FES is desirable due to
its non-invasiveness and thereby easier donning and doffing. However, with surface
FES selectivity of muscle activation becomes theoretically limited due to spread of
the applied charge. In chapter 2 the possibility and variability of finding stimula-
tion locations on the forearm to extend individual fingers was evaluated in healthy
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subjects. From the results it was concluded that although it is possible to find
appropriate locations for each degree of freedom, the exact positions of these loca-
tions are highly variable between subjects. A subject specific approach is therefore
advocated.

Subject specific methods are further investigated in chapters 3 and 4. In chapter
3 methods for modeling and control of FES for force generation are presented
and evaluated for thumb force control in healthy subjects and in chronic stroke
subjects. The results indicate that a subject specific approach describing muscle
force direction by a single direction and describing force amplitude by a nonlinear
sigmoidal curve is feasible to predict muscle force responses stimulated by surface
FES. In addition, the feasibility of using the obtained model in two dimensional
force control was shown. However, in our study the chronic stroke patients’ fatigue
and small force ranges are limiting factors. Nevertheless performance will likely
improve with more training or application earlier after stroke. The use of a feedback
controller in addition to the feed forward path, shows superior results to using
feedforward only, which leads to the conclusion that performance monitoring during
stimulation and closed loop control is desired for accurate force control.

Control of muscles based on individualized models was shown feasible in chapter
3, however tuning of all the individual controller parameters can be cumbersome
and time-consuming. Therefore, in chapter 4 steps towards a more automated
approach were taken and applied for movement control in grasp and release. Again
an individualized model is obtained. This model relates the stimulation amplitude of
muscles responsible for finger flexion, finger extension, thumb opposition, thumb
flexion and thumb abduction to angular movement of the fingers. To optimize
control inputs such that given setpoint angles for all joints are reached, a model
predictive controller was implemented and evaluated. This controller was shown
capable of tracking setpoint angles and furthermore suitable for functional grasp
and release of real objects of different sizes. Assisted interaction with real objects
provides the opportunity of functional task training, which is believed to be more
effective than movement training alone (Timmermans et al. 2009). Chapter 4
shows that this interaction is feasible with the presented model predictive controller
and is therefore a big step towards more functional task training.

7.2 Robotic support of reaching

Grasp and release movement is only functional when combined with a proper reach-
ing movement. In collaboration with project partners a prototype robotic arm ma-
nipulator was developed. The device and the control methods are presented in
chapter 5 together with the technical evaluation of the device. The system has the
technical ability to compensate the user’'s arm weight and to support the arm during
movement. Due to its inherent safety and ease of use, the system has potential to
make the final step to clinical application, or even home use. However, for clinical
application, an integrated system which not only addresses reach training but also
training of grasp and release will be more beneficial, as such a system could be
used to support functional arm movement during rehabilitation.
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7.3 Integrated system for support of reach, grasp and release

In the study described in chapter 6, the system for grasp and release support (chap-
ter 4) and for assistance of arm movement (chapter 5) were combined for training
of functional tasks. The system was evaluated during passive functional movement
tasks in healthy subjects and severely affected chronic stroke subjects. From a tech-
nical point of view, full support of the movement (i.e. the subject is completely
passive) is the most demanding task. In addition, severely affected chronic stroke
subjects are the most demanding group, as these subjects often have very limited
function and increased joint stiffness (Kwakkel et al. 2004). Performance of the
system in these subjects is currently not sufficient for complete functional move-
ment support. None of the trials in the stroke subjects were completed successfully,
partially due to inaccurate arm positioning and partially due to limited response to
the electrical stimulation of hand muscles. However, in healthy subjects high suc-
cess rates were achieved. The success rates of the movement subtasks in healthy
subjects are high (76%-100%). Analysis of the non-successful trials revealed that
robot positioning accuracy is a critical factor, which needs improvement in a future
version. This could be solved by a higher virtualstiffness, feedback of object posi-
tion and/or active control of robot position by the user. The high success rate in
healthy subjects show the feasibility of an integrated system to support functional
movement tasks. The fact that success in severely affected chronic stroke subjects
was influenced partially by technical limitations show the potential of the system
for application in post stroke rehabilitation.

7.4 Towards clinical application

The robotic manipulator presented in chapter 5 was shown effective for both grav-
ity compensation and active three dimensional assistance. Thereby, the device
allows for training of more severely affected patients compared to devices which
only provide gravity support or two dimensional assistance (Hogan et al. 1992;
Sanchez et al. 2006; Stienen et al. 2009b). The device is less powerful than strong
exoskeletal based devices (Perry et al. 2007; Nef et al. 2007) which makes it more
compact, light-weight and safe while its power is still sufficient for assistance of
functional movement tasks. In addition, FES based on the model predictive con-
trol approach presented in chapter 4 was shown successful for functional grasp and
release tasks in stroke patients. The main focus for improving this methodology
should therefore lie on the practical implementation. Currently, electrode posi-
tioning and model identification is time consuming and dependent on extensive
anatomical knowledge as appropriate positions for selective muscle activation vary
largely between subjects (chapter 2).

A system to properly target motor relearning should address the following three
aspects: 1) active user involvement, 2) detection of user intention and 3) allow for
frequent training. The current evaluation of the final integrated system presented
in chapter 6 focused only on technical feasibility of passive movements. To be
clinically applicable, it is important that the user is not passive during training.
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Motor relearning is promoted only when the user is active and allowed to make
mistakes (Reinkensmeyer et al. 2009). When the user is as active as possible
(i.e. operating at the limit of his/her ability) learning is expected to be maximal.
Therefore it is important that the system can adapt and is minimally active during
the functional tasks. Preferably the system is just sufficiently active to allow the
user to complete the task, which will increase motivation (Timmermans et al.
2009). To allow the user to be maximally active and make mistakes, the user
should also be allowed to initiate and steer movements during the task (Huang
and Krakauer 2009). Therefore the system should "know” the intention of the
user. For frequent training, an ideal solution would be to place the training device
at the patient's home. Recommendations for modifications and extensions of the
currently presented methods in light of these three aspects are discussed in the
next subsections.

7.4.1 Active user involvement

To maximize patient activity and thereby motor learning, assistance should be
minimized. Wolbrecht et al. (2008) suggested assist as needed algorithms with a
forgetting factor and a learning factor. In this approach the system learns the ability
of the patient by gradually reducing assistance over time and detecting movement
failure. Upon failure, assistance is increased again to complete the given task.
When tasks have a repetitive nature, like walking or cycling, a similar approach
could be used to adjust the assistance during each iteration (Bristow et al. 2006;
Freeman et al. 2009). Such an iterative learning control (ILC) approach could also
apply for training of repetitive reach and grasp tasks. However, the objective of
reach and grasp tasks is to manipulate objects and thereby the specific path toward
the object is less important. ILC is usually based on reference trajectories for the
whole cycle. To be applicable for functional task training ILC should update the
provided assistance only based on the success of the manipulation task. When the
task is unsuccessful, there is a need to automatically analyze the previous trial and
identify which parts of the movement cause the failure and need additional support
(e.g. Veltink et al. 1992; Franken et al. 1995). Further research into such an
approach is recommended before application in a system as described in chapter 6.
However, ILC based on minimum jerk reference trajectories (Shadmehr and Wise
2005) could already improve the therapeutic effect of such a system although it
may penalize jerky movement more than necessary to achieve the task goal.

7.4.2 Detection of user intention

Voluntary initiation of movement needs a system which detects start of movement
by the user and responds accordingly. Detection of user intention can be based on
several biological signals like brain activity, muscle activity or skeletal movement.
For application in the current hybrid system, signal detection at the interface be-
tween system and user seems the most logical, which leaves either muscle activity
(EMG), arm movement or interaction force. Corbett et al. (2011) compared detec-
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tion of EMG and force for control of a prosthetic hand and obtained similar results
for both interfaces. As FES is also applied during the movement, the electrical
field evoked by FES will also influence the EMG recordings. Although it is possible
to filter out these stimulation artefacts (Sennels et al. 1997; Langzam et al. 2006),
measurement of the interaction forces seems more straightforward, especially since
interaction forces are already measured. Based on the measured interaction force
the system can provide assistance either when a certain force threshold is exceeded
or proportional to the measured force, to make movement easier. Admittance con-
trol schemes have been applied for similar systems to detect an interaction force
and let the system respond with movement based on a dynamic model (Spenko et
al. 2006; Duchaine and Gosselin 2009; Huo et al. 2010). By changing parameters
in the dynamic model, movement assistance can be adjusted.

7.4.3 Therapy at home

Stroke therapy in the patient’s home environment might be a solution to simulta-
neously increase training intensity and release the stress on the health care system.
As described in chapter 5, the robotic system presented in this thesis already has
great potential for applicability in a home environment, due to its inherent safety
(decoupling of motor and load) and ease of use by a non-expert. However, for at
home application of the integrated system as presented in chapter 6 several im-
provements are desired. Main concern of the present system is the time to setup.
Ideally the time to setup should only be a fraction of the training session duration
and setup should be doable by the patient themselves. Currently, electrode place-
ment is cumbersome and time consuming and also model initialization takes too
long to be practically feasible.

Electrode placement is mainly time consuming due to the variability between
subjects as described in chapter 2. Therefore each electrode is placed individually
and then responses are observed to verify proper placement. This is neither time
efficient nor suitable for performance by the patients themselves. In the past
decade, several attempts have been made to apply array electrodes, covering a
large skin surface together with an automated algorithm to detect appropriate
stimulation sites (DB Popovi¢ and MB Popovi¢ 2009; Keller et al. 2006; MaleSevi¢
et al. 2012). This would be an ideal solution for proper electrode placement without
requiring experienced operators or extensive time.

Estimation of the input-output relation between stimulation amplitude and
movement response is time consuming because of the relatively large number of
channels and the repetitions needed to increase model certainty. If array electrodes
would be used, even more channels will be available. Therefore intelligent solu-
tions are needed to start training early and improve the model during the training
session. This could be achieved by a form of initial automated electrode testing
(Malesevic¢ et al. 2012) and recursive model estimation (e.g. Moon et al. 2005).
In addition, models obtained from previous sessions might be used as a starting
point. Further research into such solutions is needed and should also address the
separation of voluntary and artificial activity. When voluntary activity is present
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(section 7.4.1) it is essential to subtract the voluntary activity to properly model
the artificial contribution to the movement. The other way around, a model of vol-
untary ability would be even more useful, to predict the performance beforehand
and update the provided assistance accordingly.

7.5 Conclusion

Ideally, rehabilitation of upper extremities focuses at frequent functional movement
training (Timmermans et al. 2009) with maximized patient activity (Wolbrecht et
al. 2008; Reinkensmeyer et al. 2009). An automated system can provide this type
of training when it addresses arm and hand simultaneously, provides a workspace
similar to daily living tasks and allows the patient to make mistakes. In this thesis,
technical feasibility of an automated system combining robotic reach support with
FES based support of grasp and release was demonstrated (chapter 6). The system
uses subject specific control approaches (chapters 2, 3 and 4) and a novel robotic
end-point manipulator aimed at functional therapy in a home environment (chapter
5). Several technical improvements to increase the ease of use and tailor assistance
to ability are needed. But, importantly, the feasibility was shown and therefore the
commercial market is encouraged to implement such technology in everyday health-
care. Thereby, acceptance of technology applied in health care should further
increase: partially by more evidence of effects of the applied technology (Loureiro et
al. 2011) and partially by focusing on ease of use (Hidler and Lum 2011). Only with
efficient cooperation of therapists, physicians, engineers and scientists, the future
of stroke rehabilitation will improve. The technologic possibilities of combining
robotics and FES in a subject specific approach presented here contribute to a
future with a healthy health-care system, while maximizing functional independence
of stroke survivors.
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Reach, grasp and release is part of many functional movements. Every day
we manipulate objects without thinking how to coordinate our muscles in order to
move our arms and fingers. Over 75% of stroke survivors have upper limb motor
deficits, which makes functional arm and hand movements difficult and limits their
functional independence. Upper limb therapies after stroke focus on regaining
functional ability and independence.

Graying of society leads to more stroke victims and fewer health care profes-
sionals. Technology might be a solution to support certain rehabilitation therapies
in future health care. Robotic systems have been developed for support of arm and
hand movements and functional electrical stimulation (FES) has been applied to
activate arm and hand muscles. Therapeutic effects of both techniques have been
shown similar to conventional therapies. In addition, the application of these tech-
nologies allows for more frequent training with less physical effort for therapists.
Therefore, technology could reduce the burden on the health care system caused
by graying of society.

Repetitive practice of functional tasks has been shown beneficial for rehabilita-
tion after stroke. Simultaneous support of reach, grasp and release is desired to
increase functional outcome. Robotics has been applied successfully for arm sup-
port. Support of grasp and release with external mechanics requires high complex-
ity, which makes hand robotics currently not very suitable for functional movement
training. FES, however, has been applied successfully for activation of hand mus-
cles. A hybrid approach, combining FES support of grasp and release with robotic
reach support could be an excellent solution for enabling functional task training.

The aim of this thesis is to develop and evaluate methods for control of an
automated hybrid rehabilitation system combining robotics for reach assistance
and FES for grasp and release to allow functional arm and hand training. For
successful clinical application, such a device should be safe and easy to use by a
non-expert and should allow for fast donning and doffing to maximize available time
for training. By the use of an automated system for stroke rehabilitation, which is
also applicable in the patient’s home, therapy can be intensified even further.

For successful application of a hybrid system, solutions for individual compo-
nents have first been explored. In chapter 2, the possibilities for selective activation
of individual fingers by FES were explored and related to electrode placement in
healthy subjects. Although it was shown possible to find appropriate locations for
each degree of freedom, the exact positions of these locations are highly variable
between subjects. A subject specific approach for FES application is therefore
desired.

The human muscular system is redundant: more muscles than degrees of free-
dom are present. In chapter 3, subject specific control methods for a redundant
muscle system with FES were presented and evaluated. A subject specific model
relating the stimulation parameters of thumb muscles to the evoked thumb forces
is used to predict thumb forces in both healthy subjects and stroke subjects. Sub-
sequently, the individualized muscle models were used to control the thumb force
towards target force vectors by sharing the load among the individual muscles.
The approach was shown feasible in both healthy and stroke subjects, however the
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number of tunable parameters makes the approach somewhat cumbersome and
time-consuming for clinical application.

To reduce the number of tunable parameters, steps towards an automated
model based method were taken and applied for controlling the movement of the
thumb and fingers during grasp and release of actual objects (chapter 4). The rela-
tion between muscle stimulation and movement of individual fingers was measured
and modeled. A model predictive controller was implemented to use the estimated
model to predict the movement and calculate the required stimulation parameters
based on desired finger joint angles. This controller was shown capable of tracking
set point angles. Furthermore successful grasp and release of real objects of differ-
ent sizes was demonstrated in both healthy and stroke subjects. Thereby, chapter
4 demonstrates that controlled interaction with real objects using FES is feasible,
which is a big step towards more functional task training.

Grasp and release movement is only functional with proper reach movement.
In collaboration with project partners a prototype robotic arm manipulator was
developed. The device and its control methods were presented in chapter 5 together
with the technical evaluation of the device. The system has the technical ability
to compensate the user's arm weight and to support arm movements. Due to
its inherent safety and ease of use, the system has potential to make the final
step to clinical application, and even home use. However, for clinical application,
an integrated system which not only addresses reach training but also training of
grasp and release will be more beneficial, as such a system could be used to support
functional arm movement during rehabilitation.

The systems for grasp and release support (chapter 4) and for assistance of
arm movement (chapter 5) were combined for training of functional tasks. The
system was evaluated during passive functional movement tasks in healthy subjects
and severe chronic stroke subjects (chapter 6). From a technical point of view,
full support of the movement (i.e. the subject is completely passive) is the most
demanding task. In healthy subjects high success rates were achieved. The success
rates of the movement subtasks in healthy subjects were also high (76%-100%).
The success rates in healthy subjects show the potential of the system for functional
task support. However, performance of the system in preliminary tests with stroke
subjects is currently not satisfactory. None of the trials in the stroke subjects
were completed successfully. Partially due to positioning inaccuracies relative to
the object and partially due to limited finger movement with FES. However, the
included stroke subjects were severely affected and in a chronic state. To be
conclusive on post stroke applicability of the current system, additional evaluation
in a broader range of stroke subjects is required.

Ideally, an automated rehabilitation system should only support when necessary,
put the patient in control and allow for high intensive training. These additional
requirements will challenge the individual patient to his maximum capacity and
thereby maximize therapy outcome. In this thesis the technical feasibility and
performance was evaluated and therefore the subjects were asked to relax in the
experiments described in this thesis (i.e. no voluntary movement). A passive sub-
ject will be the most demanding situation for the system and was therefore used
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as evaluation setting. In chapter 7 possible directions for active user involvement,
detection of user intention and training in a home environment allowing for in-
tensive training were discussed. Firstly, assistance may be minimized based on
patient performance and task success rates. Secondly, the user’s intention could
be detected from the measured interaction forces. And finally, the use of array
electrodes allows for electrode placement by a non-experienced user and improves
practical applicability by reducing donning/doffing time. With such extensions the
system could be taken to a next level, allowing for frequent functional movement
training with maximized patient activity.

This thesis demonstrates the technical feasibility of an automated rehabilitation
system, which combines robotics and FES. The commercial market is encouraged
to implement such technology in everyday health-care. Thereby, acceptance of
technology applied in health care should further increase. The technologic possi-
bilities of combining robotics and FES in a subject specific approach presented here
will contribute to a sustainable health-care system, while maximizing functional in-
dependence of stroke survivors.
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Elke dag manipuleren we objecten zonder na te denken over de codrdinatie van
individuele spieren om onze armen en vingers te bewegen. Meer dan 75% van de
CVA patiénten heeft een beperkte functie van de bovenste extremiteit. Hierdoor
worden functionele arm- en handbewegingen bemoeilijkt, hetgeen hen functioneel
afhankelijk maakt. De nadruk van therapie na een beroerte ligt op het verhogen
van onafhankelijkheid door functionele bewegingen te trainen.

Vergrijzing van de samenleving leidt tot meer CVA slachtoffers en minder zorg
professionals. Technologie kan een oplossing zijn om bepaalde onderdelen van de
gezondheidszorg in de toekomst te ondersteunen. Er zijn robotsystemen ontwikkeld
voor ondersteuning van de arm en handbewegingen en ook functionele elektrische
stimulatie (FES) wordt toegepast voor activatie van arm en hand spieren. Effect
van beide technieken is aangetoond en vergelijkbaar met conventionele therapieén.
Bovendien biedt de toepassing van technologische systemen de mogelijkheid om
vaker te trainen met minder lichamelijke inspanning voor therapeuten. Daarom
zou technologie de last op de gezondheidszorg als gevolg van vergrijzing van de
samenleving kunnen verminderen.

Herhaaldelijk oefenen van functionele taken gunstig is voor revalidatie na een
beroerte. Gelijktijdige ondersteuning van reik en grijpbewegingen is gewenst om het
effect van therapie te verhogen. Voor arm ondersteuning is robotica reeds succesvol
toegepast. Echter vereist ondersteuning van de vingers met externe mechanica een
hoge complexiteit, hetgeen hand robotica momenteel minder toepasbaar maakt
voor bewegingstraining. FES daarentegen is in het verleden met succes toegepast
voor de activering van handspieren. Een hybride aanpak, die FES ondersteuning van
grijpen en loslaten combineert met robotica voor ondersteuning van reikbewegingen
zou een uitstekende oplossing kunnen om het trainen van functionele taken mogelijk
te maken.

Het doel van dit proefschrift is om methoden voor de aansturing van een ge-
automatiseerd hybride revalidatie systeem te ontwikkelen en te evalueren. Door
robot ondersteuning voor reiken te combineren met FES ondersteuning voor grij-
pen wordt functionele arm en hand training mogelijk. Voor een succesvolle klinische
toepassing, dient een dergelijk apparaat veilig en eenvoudig te gebruiken zijn door
een leek. Het revalidatieproces kan nog verder worden geintensiveerd indien een
geautomatiseerd systeem geschikt is voor thuisgebruik.

Voor een succesvolle toepassing van een hybride systeem, zijn oplossingen voor
de afzonderlijke onderdelen eerst onderzocht. In hoofdstuk 2, werden de mogelijk-
heden voor selectieve activering van afzonderlijke vingers door FES onderzocht bij
gezonde proefpersonen en gerelateerd aan plaatsing van de elektroden. Hoewel het
mogelijk is om geschikte locaties te vinden voor elke vrijheidsgraad werd aange-
toond dat de exacte posities van deze locaties zeer variabel zijn tussen verschillende
personen. Een individuele aanpak voor de toepassing van FES is daarom gewenst.

Het menselijk spierstelsel is redundant: er zijn meer spieren dan vrijheidsgra-
den aanwezig. In hoofdstuk 3 zijn geindividualiseerde methoden gepresenteerd en
geévalueerd om een redundant spierstelsel aan te sturen met FES. Een individueel
model werd gebruikt om stimulatieparameters van de duimspieren te relateren aan
de opgewekte duimkrachten. Vervolgens werden de geindividualiseerde spiermo-
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dellen gebruikt om de duimkracht naar een doelkracht (vector) te regelen door het
verdelen van de belasting over de afzonderlijke spieren. Deze aanpak is haalbaar
gebleken bij zowel gezonde proefpersonen als mensen die een CVA hebben gehad.
Echter, maken het aantal instelbare parameters de aanpak enigszins omslachtig en
tijdrovend voor klinische toepassing.

Om het aantal instelbare parameters te verminderen, zijn stappen genomen
richting een meer geautomatiseerde methode die is toegepast voor het regelen van
de beweging van de duim en de vingers tijdens pakken en weer los laten van ver-
schillende objecten (hoofdstuk 4). De relatie tussen spierstimulatie en beweging
van individuele vingers werd gemodelleerd. Een zogenoemde model predictive con-
troller (MPC) werd gebruikt om het geschatte model te gebruiken om de beweging
te voorspellen en om de benodigde stimulatieparameters te berekenen op basis van
de gewenste referentiechoeken voor de vingers. Deze regelaar bleek geschikt voor
het volgen van referentiechoeken. Daarnaast werd aangetoond dat de methode
bruikbaar is voor het succesvol pakken en weer loslaten van echte voorwerpen
met verschillende afmetingen in zowel gezonde proefpersonen als CVA patiénten.
Daarmee toont hoofdstuk 4 aan dat gecontroleerde interactie met echte objecten
haalbaar is, hetgeen een grote stap is op weg naar training van functionele taken.

Handbeweging is alleen functioneel met de juiste armbeweging. In samenwer-
king met projectpartners werd een prototype robot ontwikkeld. Het apparaat en de
aansturingsmethoden zijn gepresenteerd in hoofdstuk 5, samen met de technische
evaluatie van het apparaat. Het systeem beschikt over de technische mogelijkheden
om het armgewicht van de gebruiker te compenseren en armbewegingen te onder-
steunen. Vanwege de inherente veiligheid en het gebruiksgemak, heeft het systeem
de potentie om de laatste stap naar een klinische toepassing, of zelfs thuisgebruik,
te maken. Voor klinische toepassing is een geintegreerd systeem dat zich niet alleen
richt op armtraining maar ook op training van grijpen en loslaten gunstiger, aan-
gezien een dergelijk systeem gebruikt kan worden om functionele armbewegingen
te ondersteunen tijdens revalidatie.

De systemen voor het aansturen van de vingers met FES (hoofdstuk 4) en
voor ondersteuning van de armbeweging (hoofdstuk 5) zijn gecombineerd voor de
ondersteuning van functionele taken. Het systeem werd geévalueerd tijdens pas-
sieve functionele bewegingen bij gezonde proefpersonen en bij ernstige chronische
CVA patiénten (hoofdstuk 6). Vanuit een technisch oogpunt is volledige onder-
steuning van de beweging (de persoon is volledig passief) de meest veeleisende
taak. Bij gezonde proefpersonen werden hoge succespercentages behaald. Ook de
percentages van de deeltaken bij gezonde proefpersonen waren hoog (76 % -100
% ). De percentages bij gezonde proefpersonen tonen de mogelijkheden van het
systeem aan voor het ondersteunen van functionele taken. Echter, de prestaties
van het systeem bij chronische CVA patiénten is nog niet goed genoeg. Geen van
de testen in de CVA patiénten werden volledig succesvol afgerond. Ten dele door
onnauwkeurigheden in arm positionering en deels door beperkt resultaat van hand-
opening en grijpen. De geincludeerde CVA patiénten waren zwaar getroffen en in
een chronische toestand. Extra evaluatie in een bredere groep CVA patiénten is
vereist om goede conclusies te kunnen trekken aangaande toepasbaarheid van het
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huidige systeem.

Idealiter zou een geautomatiseerd systeem de beweging alleen ondersteunen
wanneer dat nodig is, kan de patiént het systeem zelf aansturen en biedt het sys-
teem mogelijkheden voor intensieve taak training. Deze extra eisen maximaliseren
de inspanning voor de patiént en daardoor het therapieresultaat. In dit proefschrift
is de technische haalbaarheid geévalueerd en daarom werden de proefpersonen ge-
vraagd om volledig te ontspannen in de in dit proefschrift beschreven experimenten
(geen vrijwillige beweging). Het bewegen van een passief persoon is voor het sys-
teem de meest veeleisende taak en is daarom gebruikt als uitgangspunt voor de
evaluaties. In hoofdstuk 7 zijn mogelijke oplossingen voor actieve betrokkenheid
van de gebruikers, detectie van de gebruikersintentie en training in een thuisomge-
ving voor hogere intensiteit besproken. Ten eerste, kan de ondersteuning worden
beperkt op basis van de prestaties van patiénten en taak scores. Ten tweede zou de
intentie van de gebruiker bepaald kunnen worden uit de gemeten interactie krach-
ten. Tenslotte, zou het gebruik van elektrode arrays ervoor zorgen dat elektroden
door een onervaren gebruiker geplaatst kunnen worden. Met dergelijke uitbreidin-
gen kan het systeem naar een hoger niveau worden getild, waardoor hoogfrequente
training van functionele bewegingen met maximale activiteit van de patiént moge-
lijk gemaakt wordt.

Dit proefschrift laat de technische haalbaarheid zien van een geautomatiseerd
systeem dat revalidatie robotica en FES combineert. Het is nu aan de commerciéle
markt om dergelijke technologie in de dagelijkse gezondheidszorg te implementeren.
Daarvoor dient acceptatie van technologie in de gezondheidszorg verder toe te
nemen. De technologische mogelijkheden van het combineren van robotica en FES
met een geindividualiseerde aanpak die zijn gepresenteerd in dit proefschrift zullen
bijdragen aan een duurzame gezondheidszorg, terwijl functionele onafhankelijkheid
van CVA patiénten wordt gemaximaliseerd.
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U bent begonnen met lezen van het dankwoord. Wellicht het meest gelezen
gedeelte van dit proefschrift. Een proefschrift dat er niet was geweest zonder
de hulp van vele anderen en waarvan de totstandkoming op zijn minst een stuk
onaangenamer was geweest zonder de steun van vele anderen. Eenieder die op
welke manier dan ook een bijdrage heeft geleverd aan dit proefschrift of het proces
daar naartoe wil ik hartelijk danken. Een aantal personen wil ik hieronder in het
bijzonder noemen.

Allereerst wil ik alle vrijwilligers (al dan niet met een beperking ten gevolge van
een beroerte) hartelijk danken voor hun tijd en moeite om deel te nemen aan de
verschillende experimenten. Zonder jullie had ik geen data gehad om te analyseren
en had dit proefschrift niet kunnen bestaan.

Zonder prof. dr. ir. Van der Kooij was dit proefschrift er ook zeker niet
geweest. Mogelijk had ik dan niet eens overwogen om aan een promotieonderzoek
te beginnen. Beste Herman, jij bent degene die me op deze mogelijkheid heeft
gewezen en die me er warm voor heeft weten te maken om voor deze positie te
kiezen. Terugkijkend op de afgelopen vijf jaar heb ik daar geen spijt van gehad,
heel erg bedankt voor jouw inspanningen hiervoor. Ook tijdens het onderzoek zelf
stond je altijd klaar (al dan niet fysiek, gezien je Zwitserse avontuur) met goede
suggesties (soms wat in overvloed) en een kritische blik. Je hebt me de ruimte
gegeven om mijn eigen onderzoek te leiden en was in staat om me waar nodig bij
te sturen door mij met kleine opmerkingen naar nieuwe inzichten te leiden. Enorm
bedankt daarvoor!

Prof. dr. ir. Veltink, als co-promotor heb jij ook een belangrijke rol gespeeld
in de invulling van mijn onderzoek. Beste Peter, mijn eerste ervaringen met FES
waren op jouw kantoor. Jij leerde me hoe ik de verschillende stimulatieparameters
kon instellen en wat het effect van de verschillende parameters is. Gaandeweg mijn
promotieonderzoek bleek jij behalve van FES, van veel meer dingen veel verstand
te hebben. |k dank je graag voor je scherpe blik, heldere feedback en nuttige sug-
gesties zowel tijdens het opzetten van de verschillende studies als bij het verwerken
van de data en het schrijven van de artikelen. Dankjewel!

Beste Alfred, als assistent-promotor was ook jouw hulp van groot belang. Ik
heb me verbaasd over het gemak waarmee jij tijdens het oplossen van praktische
(robot-)problemen (uitdagingen) in het lab schakelt tussen de praktijk en je grote
theoretische kennis. Even alles rustig bekijken op een rijtje zetten en beredeneren en
dan was de oplossing vaak snel binnen handbereik. Dank ook voor je nuchtere kijk
en vaak rake opmerkingen die voor mij weer als eyeopener konden dienen. Tijdens
het schrijven stond je klaar met goede suggesties om het verhaal nog helderder en
meer to the point te maken. Bedankt voor dit alles!

Lieve Lianne, volgens mij kan de vakgroep Biomedische Werktuighbouwkunde
(BW) zich geen betere secretaresse wensen. Als duizendpoot sta je altijd klaar voor
iedereen en wil en kan je alles regelen. Daarnaast ben je ook nog altijd geinte-
resseerd in de thuissituatie en zorg je voor gezelligheid in de vakgroep. Dankjewel
voor al je organisatorische hulp.

Voor het realiseren van meetopstellingen moest ik regelmatig terugvallen op het
technisch ondersteunende personeel. Met name Geert en later Wouter hebben mij
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hierbij grote diensten bewezen. Hoewel ik het zelf ook altijd leuk vond om dingen
te klussen, was het fijn om iemand in de buurt te hebben die er ook echt verstand
van heeft. Geert, jammer dat je geen deel meer uitmaakt van de vakgroep. lk heb
je aanwezigheid altijd als zeer prettig ervaren, zowel qua persoonlijkheid als voor
hulp bij het realiseren van opstellingen.

Alexander, Floor en Tjitske, samen vormden we de gezellige kamer. Dank jullie
wel voor het creéren van een prettige werksfeer, de welkome afleiding. Ook bedankt
voor de gezellige etentjes (met zijn vieren op stap in Alex' Camaro zal vrees ik niet
meer gaan lukken, althans niet met droge voeten). Fijn dat ik bij jullie terecht kon
voor suggesties, tips of babypraat.

Ook alle andere collega's van BW wil ik bedanken voor alle gezelligheid en
bruikbare tips. In het bijzonder wil ik nog het BW futsal team en de lunchwande-
laars noemen. Het was heerlijk om tussendoor even je zinnen te kunnen verzetten
door samen een balletje te trappen of een frisse neus te halen. BW is de laatste
jaren flink uitgedijd, maar steeds gezellig gebleven. Allemaal bedankt! Thank you
all!

Also | would like to gratefully thank our German MIAS-ATD project partners
TIC and Use-Lab. Christian you have been very helpful in designing and trouble-
shooting the electrical stimulator. Many thanks for all your prompt answers and
all the help in developing/modifying the stimulators. For the people at Use-Lab
many thanks for all the good discussions during meetings, the help in evaluating
the robot and the offers to assist me with my experiments.

Ook de Nederlandse projectpartners wil ik danken voor alle hulp en de prettige
bijeenkomsten. De mensen van Demcon en RRD ontzettend bedankt voor alle
hulp en prettige bijeenkomsten. Thijs, jij valt inmiddels in beide categorieén. Jou
wil ik in het bijzonder bedanken voor het sparren en de hulp en suggesties die
je had voor mijn onderzoek. |k wens je heel veel succes met de laatste loodjes
van jouw promotieonderzoek! Ook Gerdienke en Jaap wil ik hartelijk danken voor
het mij (samen met Cindy Lammertink namens de UT) wegwijs maken in METC-
land. Zonder jullie hulp had het ongetwijfeld een stuk langer geduurd voordat ik
tiberhaupt met mijn experimenten kon beginnen.

Dear Alex, although | learned German in high-school and grew up very close
to the German border, English has always been the common denominator in our
communication. | owe you many thanks in whatever language. You started your
career in Enschede with an internship within my PhD project, decided to stay and
help me out as student-assistant and finally did your MSc assignment on the same
topic, which even resulted in a chapter of this thesis. We had nice discussions on
how to interpret results or improve setups and algorithms. | had a lot of fun with
you in the lab and I'm very happy to have you as my paranimph. Vielen Dank fiir
die angenehme Zusammenarbeit!

Beste Janneke, ik ben ook erg blij met jou als paranimf. We kennen elkaar
al een hele tijd, het blijft leuk om je een beetje te stangen, maar eigenlijk ben ik
gewoon blij om jou tot mijn vriendenkring te kunnen rekenen. Fijn dat je zonder
na te hoeven denken (en zonder goed te weten wat van je verwacht wordt) direct

ja' zei op mijn verzoek om paranimf te worden. Dankjewel dat je dit voor me
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doet. lk wens je heel veel succes met je eigen promotieonderzoek!

Alle vrienden en familie wil ik danken voor de nodige afleiding die jullie me
geboden hebben. Papa en mama bedankt voor de wetenschap dat ik altijd op
jullie terug kan vallen en ook voor het organiseren van de gezellige familieweeken-
den. Thijs, Patrick, Helma, Dirk en Harm bedankt voor het mede creéren van de
gezelligheid in die weekenden. Lieve brusters, we zien elkaar niet altijd even veel
(misschien wel te weinig?) maar als we samen zijn is het altijd weer als vanouds:
gezellig. Bedankt voor de nodige afleiding de afgelopen jaren. Henk, Ineke, Sanne
en Frans, fijn dat jullie altijd zo geinteresseerd waren in mij en mijn onderzoek.
Bedankt voor de warmte en gezelligheid die jullie gebracht hebben de afgelopen
jaren. Hanne, Marie en Bent, Freek en David bedankt dat ik jullie oom mag zijn
en dank jullie wel voor het plezier dat jullie op de momenten dat we elkaar zagen
gebracht hebben met jullie onuitputtelijke energie.

Judi, mijn lief, zonder jou was dit boekje er niet geweest. Dankjewel voor al je
handreikingen. Dank je wel voor het brengen van rust op momenten van twijfel.
Dank je wel dat ik altijd heb kunnen rekenen op jou onvoorwaardelijke steun en
liefde. Ik geniet van het leven met jou. Zo mogelijk nog meer nu Emma en Sep erbij
zijn. Lieve Emma dank je wel voor al je verstopspelletjes, lekkere knuffels, leuke
dansjes en heerlijke lach. Lieve Sep, dankjewel voor je aanwezigheid, leuke lach en
het feit dat je me nu de tijd gunt om dit dankwoord te schrijven. Judi, Emma en
Sep, het spijt me dat ik de afgelopen tijd regelmatig (al dan niet fysiek) afwezig
was. lk zal er voor zorgen dat ik niet meer opeens ’uit’ sta, nu het proefschrift
bijna af is.
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